Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 9(12)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34946168

ABSTRACT

Diplodia tip blight is the most ubiquitous and abundant disease in Spanish Pinus radiata plantations. The economic losses in forest stands can be very severe because of its abundance in cones and seeds together with the low genetic diversity of the host. Pinus resinosa is not genetically diverse in North America either, and Diplodia shoot blight is a common disease. Disease control may require management designs to be adapted for each region. The genetic diversity of the pathogen could be an indicator of its virulence and spreading capacity. Our objective was to understand the diversity of Diplodia spp. in Spanish plantations and to compare it with the structure of American populations to collaborate in future management guidelines. Genotypic diversity was investigated using microsatellite markers. Eight loci (SS9-SS16) were polymorphic for the 322 isolates genotyped. The results indicate that Diplodia sapinea is the most frequent Diplodia species present in plantations of the north of Spain and has high genetic diversity. The higher genetic diversity recorded in Spain in comparison to previous studies could be influenced by the intensity of the sampling and the evidence about the remarkable influence of the sample type.

2.
Phytopathology ; 111(11): 2002-2009, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33754808

ABSTRACT

Pathogen life history traits influence epidemic development and pathogen adaptive ability to interact with their hosts in different environments. Reduced traits variation may compromise pathogen evolutionary potential, which is particularly important for introduced pathogens. Fusarium circinatum (cause of pine pitch canker) is an invasive fungal pathogen in Europe, with current distribution restricted to forest stands of Pinus radiata and Pinus pinaster in northern Spain and Portugal. This study aimed to quantify pathogenic traits of Spanish isolates of F. circinatum, with two of the strains representing the two dominant haplotypes in the Spanish population. Disease severity was measured on P. radiata, analyzing the influence of temperature and moisture duration on infection as well as the influence of temperature on spore germination, sporulation, and mycelial growth. Results indicated that the isolate representing the most common haplotype caused more severe disease on P. radiata at 25 and 30°C compared with the second most common haplotype but caused less severe disease at 15°C. Spore germination was higher for the most common haplotype, which produced more spores at 20 and 25°C. The isolate showed hyphal melanization at 5°C, which has been associated with survival and may be important because no resting structures have been described for F. circinatum. Our study determined that longer moisture periods during infection result in more severe disease from 7 to 24 h, regardless of the isolate virulence. This is the first study on virulence of the most abundant haplotypes of F. circinatum in Spain as affected by temperatures and moisture.


Subject(s)
Fusarium , Life History Traits , Pinus , Fusarium/genetics , Haplotypes , Plant Diseases , Spain , Temperature
3.
Sci Total Environ ; 685: 963-975, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31247442

ABSTRACT

Global change potentially increases forest vulnerability. Different abiotic and biotic factors may interact to cause forest decline and accelerated tree mortality. We studied a mixed Mediterranean continental forest where Pinus pinaster Ait. (maritime pine) shows widespread decline to analyse the role of different abiotic and biotic factors on health status and growth dynamics both at the individual and plot levels. We also analysed stand composition and regeneration of tree species to check whether there is a change in species dominance. Fungal pathogens were seldom present and we detected no pervasive fungi or insect infestation and no presence of pathogens like Heterobasidion or Phytophthora. Infection of hemiparasite plants like Viscum album L. (mistletoe) can reduce leaf area and its abundance is generally considered an expression of host decline. Yet, the existence among declining trees of high defoliation levels without mistletoe, but not vice versa, suggests that defoliation in response to some abiotic stressor could be a predisposing factor preceding mistletoe infection. Compared to healthy trees, declining and dead trees exhibited higher defoliation rates, smaller needles and lower recent growth with steeper negative trends. Dead and declining trees showed similar negative growth trends since the early 1990s droughts, which we interpreted as early warning signals anticipating mortality of currently declining trees in the near future. Mortality of maritime pine extending across all size classes, the lower presence of this species in the smallest size classes and its lack of regeneration suggest it is potentially losing its current dominance and being replaced by other co-occurring, more drought-tolerant species. Our results unravelled that maritime pine decline seems to be mainly driven by a combination of predisposing and inciting abiotic factors (microenvironment and drought stress) and biotic factors (mistletoe). The absence of widespread fungal pathogens suggests that they may have a minor role on pine decline acting only eventually as contributing factors. Although there could be other interrelations among factors or other biotic agents at play, our results strongly suggest that water stress plays a major role in the decline process of the dominant species on an ecosystem with strong land-use legacies.


Subject(s)
Forests , Pinus/physiology , Environmental Monitoring , Pinus/growth & development , Stress, Physiological
4.
PLoS One ; 9(12): e114971, 2014.
Article in English | MEDLINE | ID: mdl-25500822

ABSTRACT

There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3-7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43-0.58 and 0.51-0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease.


Subject(s)
Adaptation, Biological/genetics , Fusarium/pathogenicity , Pinus/genetics , Population/genetics , Genetic Variation , Morocco , Phenotype , Pinus/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Spain
5.
Microbiol Res ; 158(4): 271-9, 2003.
Article in English | MEDLINE | ID: mdl-14717447

ABSTRACT

The L-form of Pseudomonas syringae pv. phaseolicola has been proved to induce resistance to bean halo blight. Various procedures were tested to induce the L-form of Pseudomonas syringae pv. pisi for its potential use as biocontrol agent of pea bacterial blight. Cell-wall deficient cells were induced in a liquid medium with penicillin following a protocol described for P. s. pv. phaseolicola. Cell growth on solid induction medium developed as typical granular and vacuolated structures, and characteristic colonies were observed in the first transfer. However, there was poor growth in subsequent transfers and some reversion to the parental type. To improve the induction procedure, the following new procedures were applied: (1) viability of cells was monitored during induction. The optimum induction time in liquid medium with penicillin was lower for pv. pisi than for pv. phaseolicola. Viability of L-forms in solid induction medium with penicillin was low and decreased in time. (2) the inducer ticarcillin was combined with clavulanic acid, which prevented the reversion to the parental type and (3) a range of concentrations of penicillin and ticarcillin/clavulanic acid was applied by the spiral gradient endpoint method for calculation of minimum inhibitory concentrations (MIC). Based on the results from these tests an induction method for P. s. pv. pisi L-form is proposed and the relevance of L-form is discussed for practice.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Wall/drug effects , Pseudomonas syringae/drug effects , Pseudomonas syringae/growth & development , Clavulanic Acid/pharmacology , Culture Media , Microbial Sensitivity Tests , Pisum sativum/growth & development , Penicillin G/pharmacology , Pest Control, Biological , Protoplasts/drug effects , Spheroplasts/drug effects , Spheroplasts/growth & development , Ticarcillin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...