Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
Foods ; 13(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998509

ABSTRACT

The accumulation of oxidized low-density lipoprotein (oxLDL) and its toxicity in the arterial wall have been implicated in atherosclerosis. This study aimed to investigate the mechanisms underlying the atheroprotective effect of bixin, a carotenoid obtained from the seeds of the tropical plant Bixa orellana, on Cu2+-induced LDL oxidation and oxLDL-mediated effects in J774A.1 macrophage cells. Bixin's effects were compared to those of lycopene, a carotenoid widely studied for its cardiovascular protective effects. LDL was isolated from human plasma, incubated with bixin or lycopene (positive control), and subjected to oxidation with CuSO4. Afterward, bixin or lycopene was incubated with J774A.1 macrophage cells and exposed to oxLDL. The levels of ROS, RNS, GSH, nitrite, mitochondrial function, and foam cell formation, as well as the expression of proteins related to the antioxidant and inflammatory status, were evaluated. The effect of bixin in inhibiting in vitro human-isolated LDL oxidation was more potent (5-6-fold) than that of lycopene. Bixin pretreatment reduced the atherogenic signaling triggered by oxLDL in the macrophages, namely the generation of reactive species, disturbance of nitric oxide homeostasis, mitochondrial dysfunction, and foam cell formation. The cytoprotective effects of bixin were accompanied by the upregulation of Nrf2 and the downregulation of the NF-kB pathways. Lycopene showed the same protective effect as bixin, except that it did not prevent mitochondrial dysfunction. The efficient performance of bixin makes it an ideal candidate for further trials as a new nutraceutical compound for the prevention of atherosclerosis.

2.
Environ Sci Pollut Res Int ; 31(36): 49200-49213, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39048857

ABSTRACT

Environmental contamination by pharmaceuticals from industrial waste and anthropogenic activities poses adverse health effects on non-target organisms. We evaluated the neurobehavioral and biochemical responses accompanying exposure to ecological relevant concentrations of atenolol (0, 0.1, 1.0, and 10 µg/L) for seven uninterrupted days in adult zebrafish (Danio rerio). Atenolol-exposed fish exhibited anxiety-like behavior, characterized by significant bottom-dwelling with marked reduction in vertical exploration. Atenolol-exposed fish exhibited marked increase in the duration and frequency of aggressive events without altering their preference for conspecifics. Biochemical data using brain samples indicated that atenolol disrupted antioxidant enzyme activities and induced oxidative stress. Exposure to atenolol markedly decreased ATP and AMP hydrolysis without affecting ADP hydrolysis and acetylcholinesterase (AChE) activity. Atenolol significantly upregulated tryptophan hydroxylase 1 (tph1) mRNA expression but downregulated brain-derived neurotrophic factor (bdnf) mRNA. Collectively, waterborne atenolol elicits aggressive and anxiety-like responses in adult zebrafish, accompanied by oxidative stress, reduced nucleotide hydrolysis, altered tph1 and bdnf mRNA expression, which may impact the survival and health of fish in aquatic environment.


Subject(s)
Atenolol , Behavior, Animal , Oxidative Stress , Water Pollutants, Chemical , Zebrafish , Animals , Atenolol/pharmacology , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Behavior, Animal/drug effects , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics , Brain-Derived Neurotrophic Factor/metabolism
3.
Adv Neurotoxicol ; 11: 177-208, 2024 May.
Article in English | MEDLINE | ID: mdl-38741945

ABSTRACT

The gut microbes perform several beneficial functions which impact the periphery and central nervous systems of the host. Gut microbiota dysbiosis is acknowledged as a major contributor to the development of several neuropsychiatric and neurological disorders including bipolar disorder, depression, anxiety, Parkinson's disease, Alzheimer's disease, attention deficit hyperactivity disorder, and autism spectrum disorder. Thus, elucidation of how the gut microbiota-brain axis plays a role in health and disease conditions is a potential novel approach to prevent and treat brain disorders. The zebrafish (Danio rerio) is an invaluable vertebrate model that possesses conserved brain and intestinal features with those of humans, thus making zebrafish a valued model to investigate the interplay between the gut microbiota and host health. This chapter describes current findings on the utility of zebrafish in understanding molecular mechanisms of neurotoxicity mediated via the gut microbiota-brain axis. Specifically, it highlights the utility of zebrafish as a model organism for understanding how anthropogenic chemicals, pharmaceuticals and bacteria exposure affect animals and human health via the gut-brain axis.

4.
Article in English | MEDLINE | ID: mdl-38423200

ABSTRACT

Paraquat (PQ) is a herbicide widely used in agriculture to control weeds. The damage caused to health through intoxication requires studies to combating its damage to health. Bougainvillea glabra Choisy is a plant native to South America and its bracts contain a variety of compounds, including betalains and phenolic compounds, which have been underexplored about their potential applications and benefits for biological studies to neutralize toxicity. In this study, we evaluated the antioxidant and protective potential of the B. glabra bracts (BBGCE) hydroalcoholic extract against Paraquat-induced toxicity in Drosophila melanogaster. BBGCE demonstrated high antioxidant capacity in vitro through the assays of ferric-reducing antioxidant power (FRAP), radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), free radical ABTS and quantification of phenolic compounds, confirmed through identifying the main compounds. Wild males of D. melanogaster were exposed to Paraquat (1.75 mM) and B. glabra Choisy (1, 10, 50 and 100 µg/mL) in agar medium for 4 days. Flies exposed to Paraquat showed a reduction in survival rate and a significant decrease in climbing capacity and balance test when compared to the control group. Exposure of the flies to Paraquat caused a reduction in acetylcholinesterase activity, an increase in lipid peroxidation and production of reactive species, and a change in the activity of the antioxidant enzymes. Co-exposure with BBGCE was able to block toxicity induced by PQ exposure. Our results demonstrate that bract extract has a protective effect against PQ on the head and body of flies, attenuating behavioral deficit, exerting antioxidant effects and blocking oxidative damage in D. melanogaster.


Subject(s)
Nyctaginaceae , Paraquat , Animals , Male , Paraquat/toxicity , Drosophila melanogaster , Antioxidants/pharmacology , Antioxidants/metabolism , Acetylcholinesterase , Oxidative Stress , Phenols , Nyctaginaceae/metabolism , Plant Extracts/pharmacology
5.
J Sci Food Agric ; 104(7): 3807-3815, 2024 May.
Article in English | MEDLINE | ID: mdl-38270195

ABSTRACT

Olive oil production yields a substantial volume of by-products, constituting up to 80% of the processed fruits. The olive pomace by-product represents a residue of significant interest due to the diverse bioactive compounds identified in it. However, a thorough characterization and elucidation of the biological activities of olive pomace are imperative to redirect its application for functional food, nutraceutical, and pharmaceutical purposes both for animals and humans. In this review, we examine data from experimental models, including immortalized human vascular endothelial cells, human corneal and conjunctival epithelial cells, human colorectal adenocarcinoma cells, non-tumorigenic human hepatoma cells, and murine macrophages alongside clinical trials. These studies aim to validate the safety, nutritional value, and pharmacological effects of olive pomace. In vitro studies suggest that biophenols extracted from olive pomace possess antioxidant, anti-inflammatory, and antiproliferative properties that could be beneficial in mitigating cardiovascular disorders, particularly atherosclerosis, hepatosteatosis, and dry-eye disease. Protective effects against dry-eye disease were confirmed in a mouse model assay. Olive pomace used in the feed for fish and poultry has demonstrated the ability to enhance animals' immunity and improve nutritional quality of meat and eggs. Human clinical trials are scarce and have revealed minimal biological changes following the consumption of olive pomace-enriched foods. However, alterations in certain biomarkers tentatively suggest cardioprotective properties. The review underscores the value of olive pomace while addressing potential drawbacks and future perspectives, with a specific focus on the need for further investigation into the animal feed and human nutritional properties of olive pomace. © 2024 Society of Chemical Industry.


Subject(s)
Eye Diseases , Olea , Humans , Animals , Mice , Olea/chemistry , Endothelial Cells , Olive Oil/chemistry , Dietary Supplements
6.
Nat Prod Res ; : 1-6, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38146231

ABSTRACT

The Eugenia pyriformis Cambess (uvaia) is a well-known source of bioactive compounds. This study investigated the efficiency of Ultrasound-Assisted Extraction (UAE) and Enzyme-Assisted Extraction (EAE) in obtaining uvaia leaf extracts with high antioxidant and antibacterial activity. In a first step, different variables of the leaves were employed to define the best conditions for obtaining the extract with the highest total phenolic content. In a second step, the optimised extracts were characterised. In total, twenty-four phenolic compounds were identified through LC-ESI-MS/MS. The EAE in optimised conditions showed a higher amount of total phenolic compounds and antioxidant potential. It was possible to note an analogous potential of antibacterial activity of the extracts, which showed action mainly against Gram-positive bacteria. These findings suggest that the aqueous extracts of uvaia leaves are feasible, economic, and sustainable alternatives for adding value to uvaia leaves, which are an agricultural residue that is generally underutilised.

7.
Plant Foods Hum Nutr ; 78(4): 796-802, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37919536

ABSTRACT

Yerba-mate (Ilex paraguariensis) is recognized for its biocompounds and bioactive properties. This study aimed to assess the potential of yerba-mate extract to modulate the intestinal microbiota in rats. After the ethical committee approval (CEUA - UPF, number 025/2018), the Wistar rats were given a daily dose of 3.29 mg of phenolic compounds per animal for 45 days. The antioxidant activity of the extract was assessed by ABTS and FRAP assays and the total phenolic compounds was measured at different pH levels. Identification and quantification of chlorogenic acid isomers were carried out using high-performance liquid chromatography (HPLC). Intestinal microbiota modulation was evaluated by administering the yerba-mate extract or water (control) to Wistar rats via intragastric gavage and its efficiency was measured through PCR. The antioxidant capacity of the yerba-mate extract was 64.53 ± 0.26 µmol Trolox/mL (ABTS) and 52.96 ± 0.86 µmol Trolox/mL (FRAP). The total phenolic compounds showed higher levels at pH 7.5 compared to pH 2.0. Chlorogenic acid isomers were found in greater abundance, with a concentration of 14.22 g/100 g. The administration of the extract resulted in positive modulation of the intestinal microbiota, specifically for the genera Lactobacillus sp. and Prevotella sp. The increase of these genera is related to the promotion of homeostasis of the gut microbiota. Therefore, these findings indicate that yerba-mate extract possesses significant antioxidant activity and can effectively modulate the intestinal microbiota in rats. These results support the potential use of yerba-mate as an alternative for controlling and preventing diseases associated with intestinal dysbiosis.


Subject(s)
Gastrointestinal Microbiome , Ilex paraguariensis , Rats , Animals , Ilex paraguariensis/chemistry , Rats, Wistar , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chlorogenic Acid/pharmacology
8.
Foods ; 12(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38002106

ABSTRACT

The neuroinflammatory process is considered one of the main characteristics of central nervous system diseases, where a pro-inflammatory response results in oxidative stress through the generation of reactive oxygen and nitrogen species (ROS and RNS). Olive (Olea europaea L.) pomace is a by-product of olive oil production that is rich in phenolic compounds (PCs), known for their antioxidant and anti-inflammatory properties. This work looked at the antioxidant and anti-neuroinflammatory effects of the bioavailable PC from olive pomace in cell-free models and microglia cells. The bioavailable PC of olive pomace was obtained through the process of in vitro gastrointestinal digestion of fractionated olive pomace (OPF, particles size < 2 mm) and micronized olive pomace (OPM, particles size < 20 µm). The profile of the PC that is present in the bioavailable fraction as well as its in vitro antioxidant capacity were determined. The anti-neuroinflammatory capacity of the bioavailable PC from olive pomace (0.03-3 mg L-1) was evaluated in BV-2 cells activated by lipopolysaccharide (LPS) for 24 h. The total bioavailable PC concentration and antioxidant activity against peroxyl radical were higher in the OPM than those observed in the OPF sample. The activation of BV-2 cells by LPS resulted in increased levels of ROS and nitric oxide (NO). The bioavailable PCs from both OPF and OPM, at their lowest concentrations, were able to reduce the ROS generation in activated BV-2 cells. In contrast, the highest PC concentration of OPF and OPM was able to reduce the NO levels in activated microglial cells. Our results demonstrate that bioavailable PCs from olive pomace can act as anti-neuroinflammatory agents in vitro, independent of particle size. Moreover, studies approaching ways to increase the bioavailability of PCs from olive pomace, as well as any possible toxic effects, are needed before a final statement on its nutritional use is made.

9.
Food Res Int ; 173(Pt 2): 113338, 2023 11.
Article in English | MEDLINE | ID: mdl-37803692

ABSTRACT

Grain germination increases the contents of benzoxazinoids and the antioxidant capacity of wheat and differentially affects the phytochemical composition of hard and soft wheat cultivars. It was investigated whether wheat cultivars (sprouted or not) with distinct grain texture characteristics (BRS Guaraim, soft vs. BRS Marcante, hard texture) would have different behavior in relation to changes in phytochemical compounds, bioaccessibility and antioxidant capacity during simulated gastrointestinal digestion of a tabbouleh preparation. Sprouting increased the nominal amount of phytochemicals in tabbouleh resulting in increased release of phenolic acids (up to 7.5-fold) and benzoxazinoids (up to 12.5-fold) during all digestion phases besides higher bioaccessibility (up to 2.8-fold). Sprouting caused greater increase in the bioaccessibility of phenolic acids for the soft wheat cultivar (4.5-fold) than for the hard cultivar (1.9-fold) and it increased the colon available index of phenolic acids only for the soft cultivar (1.8-fold). Flavonoids, mainly represented by apigenin glycosides, were marginally increased after sprouting but underwent relative increase along digestion being the major phytochemicals found in the bioaccessible fraction obtained after intestinal digestion (73-94% of total phytochemicals). The increase in apigenin glycosides was associated to the increase of in vitro and intracellular antioxidant capacity of tabbouleh along digestion. Sprouting increased the peroxyl radical removal capacity of tabbouleh in the gastric phase and in the non-bioaccessible fraction regardless of the cultivar. The highest hydroxyl radical removal capacities were found in non-sprouted cultivars, especially in the soft texture cultivar in the undigested and bioaccessible fractions. The bioaccessible fraction obtained after wheat digestion was more efficient to scavenge intracellular ROS than undigested samples, the highest scavenging potency being observed for the hard texture cultivar with no effect of sprouting. These findings confirm the hypothesis that the phytochemicals of hard and soft wheat cultivars (sprouted or not) have different behavior during digestion in terms of biotransformation, bioaccessibility and ability to remove reactive species and indicate that tabbouleh produced from sprouted wheat results in increased release of bioactive phytochemicals during digestion.


Subject(s)
Antioxidants , Flavonoids , Antioxidants/metabolism , Phenols/metabolism , Triticum/chemistry , Benzoxazines , Apigenin , Digestion , Glycosides , Phytochemicals
10.
Reprod Domest Anim ; 58(12): 1662-1671, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37743826

ABSTRACT

In the postpartum period, there is an increase in non-esterified fatty acids (NEFA) in both serum and follicular fluid (FF) of cattle. The increase in fatty acid concentration results in increased production of reactive oxygen species (ROS) that can compromise bovine fertility. The objectives of this study were to characterize the lipid profile found in the FF of cows experiencing induced negative energy balance (NEB) and to evaluate the effect of α-tocopherol in the prevention of oxidative stress in the serum and FF of cows. Twenty-nine beef cows were divided into groups: (1) control; (2) Fasting for 24 days; and (3) Fasting + VitE. Between D0 and D4 blood samples were taken to assess concentrations of NEFA, ROS production, total antioxidant capacity (FRAP), lipid peroxidation, and α-tocopherol (vitamin E). On D4, follicular aspiration was performed for analysis of FF from the dominant follicle. Our results demonstrate that fasting was effective in causing increased fat mobilization in animals. The increase in serum concentration of C18:1c9 was reflected in the FF of fasting cows. Serum α-tocopherol concentration was higher in the control and Fasting + VitE groups compared to the Fasting group. In FF, there was an increase of α-tocopherol in the Fasting + VitE group in comparison to Fasting cows. There was an increase in ROS production in the serum of fasting cows. ROS production in FF was higher in the Fasting compared to the Fasting + VitE group. Vitamin E has beneficial effects in reducing ROS production in the dominant follicle of cows in NEB.


Subject(s)
Fatty Acids, Nonesterified , Vitamin E , Female , Cattle , Animals , Reactive Oxygen Species , Vitamin E/pharmacology , Lactation/metabolism , alpha-Tocopherol/pharmacology
11.
Foods ; 12(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37297401

ABSTRACT

Olive pomace oil is obtained when a mixture of olive pomace and residual water is subjected to a second centrifugation. This oil has small amounts of phenolic and volatile compounds compared with extra-virgin olive oil. This study aimed to promote the aromatization of olive pomace oil with rosemary and basil using ultrasound-assisted maceration (UAM) to increase its bioactive potential. For each spice, the ultrasound operating conditions (amplitude, temperature, and extraction time) were optimized through central composite designs. Free fatty acids, peroxide value, volatile compounds, specific extinction coefficients, fatty acids, total phenolic compounds, antioxidant capacity, polar compounds, and oxidative stability were determined. After obtaining the optimal maceration conditions assisted by ultrasound, pomace oils flavored with rosemary and basil were compared to pure olive pomace oil. Quality parameters and fatty acids showed no significant difference after UAM. Rosemary aromatization by UAM resulted in a 19.2-fold increase in total phenolic compounds and a 6-fold increase in antioxidant capacity, in addition to providing the most significant increase in oxidative stability. Given this, aromatization by ultrasound-assisted maceration is an efficient method to increase, in a short time, the bioactive potential of olive pomace oil.

12.
Neuroscience ; 519: 10-22, 2023 05 21.
Article in English | MEDLINE | ID: mdl-36933760

ABSTRACT

Given the importance of understanding the disorders caused by trans fatty acids (TFAs), this study sought to add different concentrations hydrogenated vegetable fat (HVF) to the diet of Drosophila melanogaster during the developmental period and evaluate the effects on neurobehavioral parameters. Longevity, hatching rate, and behavioral functions were assessed, such as negative geotaxis, forced swimming, light/dark, mating, and aggressiveness. The fatty acids (FAs) present in the heads of the flies were quantified as well as serotonin (5HT) and dopamine (DA) levels. Our findings showed that flies that received HVF at all concentrations during development showed reduced longevity and hatching rates, in addition to increased depression-like, anxious-like, anhedonia-like, and aggressive behaviors. As for the biochemical parameters, there was a more significant presence of TFA in flies exposed to HVF at all concentrations evaluated and lower 5HT and DA levels. This study shows that HVF during the developmental phase can cause neurological changes and consequently induce behavioral disorders, thereby highlighting the importance of the type of FA offered in the early stages of life.


Subject(s)
Drosophila melanogaster , Trans Fatty Acids , Rats , Animals , Rats, Wistar , Fatty Acids , Depression
13.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36678581

ABSTRACT

Depression is a major psychiatric disorder in Brazil and worldwide. Vaccinium ashei (V. ashei) leaves are cultivation by-products with high bioactive compound levels. Here, a hydroalcoholic extract of V. ashei leaves (HEV) was associated with Eudragit® RS100-based nanoparticles (NPHEV) to evaluate the in vitro antioxidant and in vivo antidepressant-like effects. Interfacial deposition of the preformed polymer method was used for NPHEV production. The formulations were evaluated regarding physicochemical characteristics, antioxidant activity (DPPH radical scavenging and oxygen radical absorbance capacity), and antidepressant-like action (1-25 mg/kg, single intragastric administration) assessed in forced swimming and tail suspension tests in male Balb-C mice. The NPHEV presented sizes in the nanometric range (144-206 nm), positive zeta potential values (8-15 mV), polydispersity index below 0.2, and pH in the acid range. The phenolic compound content was near the theoretical values, although the rutin presented higher encapsulation efficiency (~95%) than the chlorogenic acid (~60%). The nanoencapsulation improved the HEV antioxidant effect and antidepressant-like action by reducing the immobility time in both behavioral tests. Hence, Eudragit® RS100 nanoparticles containing HEV were successfully obtained and are a promising alternative to manage depression.

14.
Foods ; 12(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36673335

ABSTRACT

Fermentation is an important tool in producing functional beverages through agro-industrial wastes, and medicinal and aromatic plants due to the specific content of bioactive molecules. Therefore, this study evaluated the contribution of Matricaria recutita (chamomile), Cymbopogon citratus (lemongrass), or Mentha piperita (peppermint) extracts to the phytochemical profile and potential biological effects of a functional fermented orange beverage in vitro and in silico. The concentrations of aromatic herbal extracts that yielded the best sensory performance for fermented beverages were selected for analyses that involved characterizing the fermented beverages. The beverages that received the extracts (2%) had the highest phenolic and flavonoid content and antioxidant potential compared to the control. Hesperidin (124-130 mg L-1), narirutin (66-70 mg L-1), chlorogenic (11-16 mg L-1), caffeic (5.3-5.5 mg L-1), and ferulic (1-1.7 mg L-1) acids were found in the different formulations. The in silico analysis suggested that the evaluated compounds do not present a toxicity risk (mutagenicity, carcinogenicity, hepatotoxicity, and ability to penetrate the blood-brain barrier). Additionally, they can contribute to the biological effects of therapeutic importance, such as antioxidant, gastroprotective, and anti-ulcerative properties, and the Mentha piperita L. extract presented the greatest potential among the evaluated herbs for use in functional fermented beverages.

15.
Molecules ; 28(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36677783

ABSTRACT

Pre-harvest sprouting is a frequent problem for wheat culture that can be simulated by laboratory-based germination. Despite reducing baking properties, wheat sprouting has been shown to increase the bioavailability of some nutrients. It was investigated whether wheat cultivars bearing distinct grain texture characteristics (BRS Guaraim, soft vs. BRS Marcante, hard texture) would have different behavior in terms of the changes in phytochemical compounds during germination. Using LC-Q-TOF-MS, higher contents of benzoxazinoids and flavonoids were found in the hard cultivar than in the soft one. Free phytochemicals, mainly benzoxazinoids, increased during germination in both cultivars. Before germination, soft and hard cultivars had a similar profile of matrix-bound phytochemicals, but during germination, these compounds have been shown to decrease only in the hard-texture cultivar, due to decreased levels of phenolic acids (trans-ferulic acid) and flavonoids (apigenin) that were bound to the cell wall through ester-type bonds. These findings confirm the hypothesis that hard and soft wheat cultivars have distinct behavior during germination concerning the changes in phytochemical compounds, namely the matrix-bound compounds. In addition, germination has been shown to remarkably increase the content of benzoxazinoids and the antioxidant capacity, which could bring a health-beneficial appeal for pre-harvested sprouted grains.


Subject(s)
Benzoxazines , Triticum , Triticum/chemistry , Benzoxazines/metabolism , Phenols/analysis , Flavonoids/chemistry , Edible Grain/chemistry , Phytochemicals/metabolism , Germination
16.
Acta sci., Biol. sci ; 45: e64188, 2023. tab
Article in English | VETINDEX | ID: biblio-1509430

ABSTRACT

Tilapia is a species with great growth potential. Its production comes from a semi-intensive system, such as earthen ponds (EP). Recently, biofloc technology (BFT) appears as an option to intensify fish production. The objective of this work was to compare the organosomatic indices, biochemical parameters, and chemical composition of tilapia reared in EP and BFT. Fish were grown for 150 days, with an initial weight of ≅ 2 g and a final weight of ≅ 780 g. Thereafter, tissues and organs were collected to determine organosomatic indices and analyze biochemical parameters, fatty acid, and proximate composition. The carcass yield was higher for tilapia reared in EP than BFT. The production system did not affect the fish fillet yield. The other organosomatic parameters were higher for tilapia reared in BFT. Tilapia reared in EP showed higher content of crude protein and lipids in the fillet. In both production systems, there was no difference in the body lipid profile. Fish in BFT showed a higher concentration of glucose and ammonia in the muscle and amino acids in the liver. Fish reared in EP showed a higher concentration of lactate in the liver compared to those in BFT. In conclusion, the production system alters the metabolism of fish. The biofloc has a considerable amount of fatty acids, which can be considered in the formulation of diets for tilapia in this system.(AU)


Subject(s)
Animals , Tilapia/physiology , Lipid Metabolism/physiology , Biochemical Phenomena/physiology , Fisheries
17.
Clin Nutr ESPEN ; 50: 33-40, 2022 08.
Article in English | MEDLINE | ID: mdl-35871944

ABSTRACT

INTRODUCTION: Coffee is one of the most consumed foodstuffs worldwide. Studies of coffee intake in healthy subjects have shown controversial effects on vascular function. However, little is known of coffee intake effects on the endothelium of overweight and obese individuals. OBJECTIVE: To investigate the acute effects of caffeinated and decaffeinated coffee intake on the endothelial function and arterial stiffness in overweight and obese individuals. METHODS: A randomized, double-blind, crossover clinical trial was designed to investigate the effects of regular caffeinated coffee and decaffeinated coffee on the endothelium. Each subject had both caffeinated coffee and decaffeinated coffee, separated by a washout period of seven days. The endothelial function was measured by flow-mediated dilation (FMD) assessed by ultrasound. Arterial stiffness was measured by an automatic oscillometric device. Blood samples were collected to assess the lipid and nitric oxide profiles. RESULTS: There were 18 subjects included in the study, aged 37.4 ± 10.0 years, with an average BMI of 28.96 ± 2.42, with the majority being female (61.1%). The caffeinated coffee increased central systolic blood pressure (P < 0.001), central diastolic blood pressure (P < 0.001) and pulse wave velocity (P < 0.001), but the decaffeinated coffee did not affect these variables. However, there was a better effect on FMD in the caffeinated coffee intake group (P = 0.014). CONCLUSION: In overweight and obese individuals, caffeinated coffee increased central blood pressure and pulse wave velocity but not the decaffeinated coffee. While caffeinated coffee showed an improvement on hyperemia-induced endothelial function. REGISTRATION NUMBER OF CLINICAL TRIAL: Platform of the Brazilian Registry of Clinical Trials under number RBR-65cxtr.


Subject(s)
Coffee , Vascular Stiffness , Caffeine/pharmacology , Double-Blind Method , Endothelium, Vascular , Female , Humans , Male , Obesity , Overweight , Pulse Wave Analysis
18.
Food Chem ; 383: 132446, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35202925

ABSTRACT

This study aimed to verify if microwave hydrodiffusion and gravity (MHG) could efficiently extract anthocyanins from strawberries and raspberries with low environmental impact and costs. Our findings revealed that it was possible to extract 69 and 64% anthocyanins from the strawberries and raspberries in a single extraction step, respectively. When the co-product (product remaining after extracting in natura fruits) was hydrated with green solvents and subjected to re-extraction, it was possible to exhaustively extract the anthocyanins from both fruits. Using the Green Analytical Procedure Index (GAPI), the MHG proved to cause low environmental impact due to the solvents used, enabling the reuse of the co-product for food and pharmaceutical products application. Moreover, the MHG was economically viable, and the sample pretreated with distilled water was the most indicated re-extraction method. The MHG process proved to be exhaustive for strawberry and raspberry anthocyanins, thus demonstrating to be an excellent alternative for sustainable extraction.


Subject(s)
Fragaria , Rubus , Anthocyanins , Fruit , Microwaves , Solvents
19.
Nat Prod Res ; 36(11): 2897-2901, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34039226

ABSTRACT

Achyrocline flaccida aqueous extract was obtained by macerating wildflowers. The phytochemical profile present in the A. flaccida aqueous extract was elucidated by HPLC-ESI-MS/MS. Toxicity was evaluated in vitro by comet assay in peripheral blood mononuclear cells (PBMCs) and in vivo using Caenorhabditis elegans as a model. The antioxidant activity was also evaluated, and antimycobacterial activity was assessed by the broth microdilution method. The compounds present in the aqueous extract mainly belonged to the flavonoid class (89%). The concentrations that showed protective effects in C. elegans against oxidative stress and antimycobacterial activity had no toxic effects. The antimycobacterial activity test demonstrated that the concentration of 1,560 µg mL-1 inhibited the growth and eradication of the mycobacterial tested strains. Based on our findings, the A. flaccida aqueous extract presents a viable potential in developing new phytotherapeutic drugs against mycobacteria of clinical relevance.


Subject(s)
Achyrocline , Asteraceae , Achyrocline/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Asteraceae/chemistry , Brazil , Caenorhabditis elegans , Leukocytes, Mononuclear , Plant Extracts/chemistry , Tandem Mass Spectrometry
20.
Drug Chem Toxicol ; 45(2): 810-821, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32538198

ABSTRACT

Natural products are often used by the population to treat and/or prevent several disorders. Tucumã is an Amazonian fruit widely consumed by local population and no in vivo toxicity studies regarding its safety are available in the literature to date. Therefore, the phytochemical characterization, acute and repeated dose 28-day oral toxicities of crude extract of tucumã's pulp (CETP) in Wistar rats were evaluated. For the CETP preparation, tucumã pulp was crushed and placed into sealed amber glass jars containing absolute ethanol solution for extraction. CETP phytochemical analyses evidenced the presence of carotenoids, flavonoids, unsaturated and satured fatty acids, and triterpenes. In the acute toxicity, female rats from the test group were treated with CETP at single dose of 2000 mg/kg. For the repeated dose toxicity, CETP was administered to male and female rats at doses of 200, 400 and 600 mg/kg, for 28 days. Body weight was recorded during the experiment and blood, liver and kidney were collected for further analysis. No mortality or toxicity signs were observed during the studies. CETP was classified as safe (category 5, OECD guide), in acute toxicity. In repeated dose study was observed alterations in some biochemical parameters, as well as in oxidative damage and enzymatic activity. Histopathological findings showed renal damage in male rats at higher dose. The data obtained suggest that CETP did not induced toxicity after exposure to a single or repeated doses in female rats. However, in males may be considered safe when given repeatedly in low doses.


Subject(s)
Arecaceae , Animals , Arecaceae/chemistry , Carotenoids , Female , Fruit/chemistry , Male , Phytochemicals/analysis , Phytochemicals/toxicity , Plant Extracts/chemistry , Rats , Rats, Wistar , Toxicity Tests, Acute
SELECTION OF CITATIONS
SEARCH DETAIL