Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
Adv Mater ; : e2405094, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39097951

ABSTRACT

Solution-processable poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is an important polymeric conductor used extensively in organic flexible, wearable, and stretchable optoelectronics. However, further enhancing its conductivity and long-term stability while maintaining its superb mechanical properties remains challenging. Here, a novel post-treatment approach to enhance the electrical properties and stability of sub-20-nm-thin PEDOT:PSS films processed from solution is introduced. The approach involves a sequential post-treatment with HNO3 and CsCl, resulting in a remarkable enhancement of the electrical conductivity of PEDOT:PSS films to over 5500 S cm-1, along with improved carrier mobility. The post-treated films exhibit remarkable air stability, retaining over 85% of their initial conductivity even after 270 days of storage. Various characterization techniques, including X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy, Hall effect measurements, and grazing incidence wide angle X-ray scattering, coupled with density functional theory calculations, provide insights into the structural changes and interactions responsible for these improvements. To demonstrate the potential for practical applications, the ultrathin PEDOT:PSS films are connected to an inorganic light-emitting diode with a battery, showcasing their suitability as transparent electrodes. This work presents a promising approach for enhancing the electrical conductivity of PEDOT:PSS while offering a comprehensive understanding of the underlying mechanisms that can guide further advances.

2.
J Am Chem Soc ; 146(33): 22970-22981, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39120593

ABSTRACT

Mixed tin-lead (Sn-Pb) halide perovskites stand out as promising materials for next-generation photovoltaics and near-infrared optoelectronics. However, their sensitivity to oxidative degradation remains a major hurdle toward their widespread deployment. A holistic understanding of their oxidation processes considering all their constituent ions is therefore essential to stabilize these materials. Herein, we reveal that A-site cation choice plays an inconspicuous yet crucial role in determining Sn-Pb perovskite stability toward oxidation. Comparing typical A-site compositions, we show that thin films and solar cells containing cesium are more resistant to oxidative stress relative to their methylammonium analogs. We identify degradation in these compositions to be closely linked to the presence of triiodide, a harmful species evolving from native I2 oxidants. We find that hydrogen bonding between methylammonium and I2 promotes triiodide formation, while the strong polarizing character of cesium limits this process by capturing I2. Inspired from these findings, we design two strategies to boost stability of sensitive methylammonium-based Sn-Pb perovskite films and devices against oxidation. Specifically, we modulate the polarizing character of surface A-sites in perovskite via CsI and RbI coatings, and we incorporate Na2S2O3 as an I2 scavenging additive. These crucial mechanistic insights will pave the way for the design of highly efficient and stable Sn-Pb perovskite optoelectronics.

3.
Front Chem ; 12: 1419019, 2024.
Article in English | MEDLINE | ID: mdl-39072260

ABSTRACT

Human amylin (hIAPP) is found in the form of amyloid deposits within the pancreatic cells of nearly all patients diagnosed with type 2 diabetes mellitus (T2DM). However, rat amylin (rIAPP) and pramlintide - hIAPP analogs - are both non-toxic and non-amyloidogenic. Their primary sequences exhibit only slight variations in a few amino acid residues, primarily concentrated in the central region, spanning residues 20 to 29. This inspired us to study this fragment and investigate the impact on the aggregation properties of substituting residues within the central region of amylin and its analogs. Six fragments derived from amylin have undergone comprehensive testing against various metal ions by implementing a range of analytical techniques, including Nuclear Magnetic Resonance (NMR) spectroscopy, Thioflavin T (ThT) assays, Atomic Force Microscopy (AFM), and cytotoxicity assays. These methodologies serve to provide a thorough understanding of how the substitutions and interactions with metal ions impact the aggregation behavior of amylin and its analogs.

4.
Biomed Pharmacother ; 177: 117058, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968797

ABSTRACT

The NF-κB pathway plays a pivotal role in impeding the diabetic wound healing process, contributing to prolonged inflammation, diminished angiogenesis, and reduced proliferation. In contrast to modern synthetic therapies, naturally occurring phytoconstituents are well-studied inhibitors of the NF-κB pathway that are now attracting increased attention in the context of diabetic wound healing because of lower toxicity, better safety and efficacy, and cost-effectiveness. This study explores recent research on phytoconstituent-based therapies and delve into their action mechanisms targeting the NF-κB pathway and potential for assisting effective healing of diabetic wounds. For this purpose, we have carried out surveys of recent literature and analyzed studies from prominent databases such as Science Direct, Scopus, PubMed, Google Scholar, EMBASE, and Web of Science. The classification of phytoconstituents into various categorie such as: alkaloids, triterpenoids, phenolics, polyphenols, flavonoids, monoterpene glycosides, naphthoquinones and tocopherols. Noteworthy phytoconstituents, including Neferine, Plumbagin, Boswellic acid, Genistein, Luteolin, Kirenol, Rutin, Vicenin-2, Gamma-tocopherol, Icariin, Resveratrol, Mangiferin, Betulinic acid, Berberine, Syringic acid, Gallocatechin, Curcumin, Loureirin-A, Loureirin-B, Lupeol, Paeoniflorin, and Puerarin emerge from these studies as promising agents for diabetic wound healing through the inhibition of the NF-κB pathway. Extensive research on various phytoconstituents has revealed how they modulate signalling pathways, including NF-κB, studies that demonstrate the potential for development of therapeutic phytoconstituents to assist healing of chronic diabetic wounds.


Subject(s)
NF-kappa B , Phytochemicals , Signal Transduction , Wound Healing , Wound Healing/drug effects , Humans , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Phytochemicals/pharmacology , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Phytotherapy/methods
5.
Angew Chem Int Ed Engl ; : e202411048, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946177

ABSTRACT

The direct liquid-phase oxidative carbonylation of methane, utilizing abundant natural gas, offers a mild and straightforward alternative. However, most catalysts proposed for this process suffer from low acetic acid yields due to few active sites and rapid C1 oxygenate generation, impeding their industrial feasibility. Herein, we report a highly efficient 0.1Cu/Fe-HZSM-5-TF (TF denotes template-free synthesis) catalyst featuring exclusively mononuclear Fe and Cu anchored in the ZSM-5 channels. Under optimized conditions, the catalyst achieved an unprecedented acetic acid yield of 40.5 mmol gcat -1 h-1 at 50 °C, tripling the previous records of 12.0 mmol gcat -1 h-1. Comprehensive characterization, isotope-labeled experiments and density functional theory (DFT) calculations reveal that the homogeneous mononuclear Fe sites are responsible for the activation and oxidation of methane, while the neighboring Cu sites play a key role in retarding the oxidation process, promoting C-C coupling for effective acetic acid synthesis. Furthermore, the methyl-group carbon in acetic acid originates solely from methane, while its carbonyl-group carbon is derived exclusively from CO, rather than the conversion of other C1 oxygenates. The proposed bimetallic catalyst design not only overcomes the limitations of current catalysts but also generalizes the oxidative carbonylation of other alkanes, demonstrating promising advancements in sustainable chemical synthesis.

6.
ACS Pharmacol Transl Sci ; 7(6): 1664-1693, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38898941

ABSTRACT

Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease, that causes joint damage, deformities, and decreased functionality. In addition, RA can also impact organs like the skin, lungs, eyes, and blood vessels. This autoimmune condition arises when the immune system erroneously targets the joint synovial membrane, resulting in synovitis, pannus formation, and cartilage damage. RA treatment is often holistic, integrating medication, physical therapy, and lifestyle modifications. Its main objective is to achieve remission or low disease activity by utilizing a "treat-to-target" approach that optimizes drug usage and dose adjustments based on clinical response and disease activity markers. The primary RA treatment uses disease-modifying antirheumatic drugs (DMARDs) that help to interrupt the inflammatory process. When there is an inadequate response, a combination of biologicals and DMARDs is recommended. Biological therapies target inflammatory pathways and have shown promising results in managing RA symptoms. Close monitoring for adverse effects and disease progression is critical to ensure optimal treatment outcomes. A deeper understanding of the pathways and mechanisms will allow new treatment strategies that minimize adverse effects and maintain quality of life. This review discusses the potential targets that can be used for designing and implementing precision medicine in RA treatment, spotlighting the latest breakthroughs in biologics, JAK inhibitors, IL-6 receptor antagonists, TNF blockers, and disease-modifying noncoding RNAs.

7.
Article in English | MEDLINE | ID: mdl-38684003

ABSTRACT

In this work, a relatively new class of materials, rare earth (RE) based high entropy oxides (HEO) are discussed in terms of the evolution of the oxygen vacant sites (Ov) content in their structure as the composition changes from binary to HEO using both experimental and computational tools; the composition of HEO under focus is the CeLaPrSmGdO due to the importance of ceria-related (fluorite) materials to catalysis. To unveil key features of quinary HEO structure, ceria-based binary CePrO and CeLaO compositions as well as SiO2, the latter as representative nonreducible oxide, were used and compared as supports for Ru (6 wt % loading). The role of the Ov in the HEO is highlighted for the ammonia production with particular emphasis on the N2 dissociation step (N2(ads) → Nads) over a HEO; the latter step is considered the rate controlling one in the ammonia production. Density functional theory (DFT) calculations and 18O2 transient isotopic experiments were used to probe the energy of formation, the population, and the easiness of formation for the Ov at 650 and 800 °C, whereas Synchrotron EXAFS, Raman, EPR, and XPS probed the Ce-O chemical environment at different length scales. In particular, it was found that the particular HEO composition eases the Ov formation in bulk, in medium (Raman), and in short (localized) order (EPR); more Ov population was found on the surface of the HEO compared to the binary reference oxide (CePrO). Additionally, HEO gives rise to smaller and less sharp faceted Ru particles, yet in stronger interaction with the HEO support and abundance of Ru-O-Ce entities (Raman and XPS). Ammonia production reaction at 400 °C and in the 10-50 bar range was performed over Ru/HEO, Ru/CePrO, Ru/CeLaO, and Ru/SiO2 catalysts; the Ru/HEO had superior performance at 10 bar compared to the rest of catalysts. The best performing Ru/HEO catalyst was activated under different temperatures (650 vs 800 °C) so to adjust the Ov population with the lower temperature maintaining better performance for the catalyst. DFT calculations showed that the HEO active site for N adsorption involves the Ov site adjacent to the adsorption event.

8.
MethodsX ; 12: 102695, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38595808

ABSTRACT

Metabolomics, a recent addition to omics sciences, studies small molecules across plants, animals, humans, and marine organisms. Nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS) are widely used in those studies, including microalgae metabolomics. NMR is non-destructive and highly reproducible but has limited sensitivity, which could be supplemented by joining GC-MS analysis. Extracting metabolites from macromolecules requires optimization for trustworthy results. Different extraction methods yield distinct profiles, emphasizing the need for optimization. The results indicated that the optimized extraction procedure successfully identified NMR and GC-MS-based metabolites in MeOH, CHCl3, and H2O extraction solvents. The findings represented the spectral information related to carbohydrates, organic molecules, and amino acids from the water-soluble metabolites fraction and a series of fatty acid chains, lipids, and sterols from the lipid fraction. Our study underscores the benefit of combining NMR and GC-MS techniques to comprehensively understand microalgae metabolomes, including high and low metabolite concentrations and abundances.•In this study, we focused on optimizing the extraction procedure and combining NMR and GC-MS techniques to overcome the low NMR sensitivity and the different detected range limits of NMR and GC-MS.•We explored metabolome diversity in a tropical strain of the small cells' diatom Cheatoceros tenuissimus.

9.
Nat Commun ; 15(1): 2630, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521857

ABSTRACT

Efficiently capturing radioactive methyl iodide (CH3I), present at low concentrations in the high-temperature off-gas of nuclear facilities, poses a significant challenge. Here we present two strategies for CH3I adsorption at elevated temperatures using a unified azolate-based metal-organic framework, MFU-4l. The primary strategy leverages counter anions in MFU-4l as nucleophiles, engaging in metathesis reactions with CH3I. The results uncover a direct positive correlation between CH3I breakthrough uptakes and the nucleophilicity of the counter anions. Notably, the optimal variant featuring SCN- as the counter anion achieves a CH3I capacity of 0.41 g g-1 at 150 °C under 0.01 bar, surpassing all previously reported adsorbents evaluated under identical conditions. Moreover, this capacity can be easily restored through ion exchange. The secondary strategy incorporates coordinatively unsaturated Cu(I) sites into MFU-4l, enabling non-dissociative chemisorption for CH3I at 150 °C. This modified adsorbent outperforms traditional materials and can be regenerated with polar organic solvents. Beyond achieving a high CH3I adsorption capacity, our study offers profound insights into CH3I capture strategies viable for practically relevant high-temperature scenarios.

10.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474590

ABSTRACT

Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neoplasms , Humans , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Delivery Systems , c-Mer Tyrosine Kinase , Tumor Microenvironment , Neoplasms/drug therapy
11.
Biomed J ; : 100714, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38452973

ABSTRACT

Mitochondria are vital organelles found within living cells and have signalling, biosynthetic, and bioenergetic functions. Mitochondria play a crucial role in metabolic reprogramming, which is a characteristic of cancer cells and allows them to assure a steady supply of proteins, nucleotides, and lipids to enable rapid proliferation and development. Their dysregulated activities have been associated with the growth and metastasis of different kinds of human cancer, particularly ovarian carcinoma. In this review, we briefly demonstrated the modified mitochondrial function in cancer, including mutations in mtDNA, reactive oxygen species production, dynamics, apoptosis of cells, autophagy, and calcium excess to maintain cancer genesis, progression, and metastasis. Furthermore, the mitochondrial dysfunction pathway for some genomic, proteomic, and metabolomics modifications in ovarian cancer has been studied. Additionally, ovarian cancer has been linked to targeted therapies and biomarkers found through various alteration processes underlying mitochondrial dysfunction, notably targeting reactive oxygen species, metabolites, rewind metabolic pathways, and chemo-resistant ovarian carcinoma cells.

12.
Nanomedicine (Lond) ; 19(8): 709-722, 2024 04.
Article in English | MEDLINE | ID: mdl-38323335

ABSTRACT

Aims: The development of nanocomposites (NCs) of antitumor activity provides a new paradigm for fighting cancer. Here, a novel NC of green synthetic silver nanoparticles (AgNPs), graphene oxide (GO) and chitosan (Cs) NPs was developed. Materials & methods: The prepared GO/Cs/Ag NCs were analyzed using various techniques. Cytotoxicity of the NCs was evaluated against different cancer cell lines by Sulforhodamine B (SRB) assay. Results: GO/Cs/Ag NCs are novel and highly stable. UV-Vis showed two peaks at 227 and 469 nm, indicating the decoration of AgNPs on the surface of GO/Cs NPs. All tested cell lines were affected by GO/Cs NPs and GO/Cs/Ag NCs. Conclusion: The results indicate that GO/Cs/Ag NCs were present on tested cell lines and are a promising candidate for cancer therapy.


Subject(s)
Chitosan , Graphite , Metal Nanoparticles , Nanocomposites , Neoplasms , Humans , Silver , Metal Nanoparticles/therapeutic use , Cell Line , Anti-Bacterial Agents
13.
ACS Omega ; 9(7): 7480-7490, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405480

ABSTRACT

Diabetes is an emerging disorder in the world and is caused due to the imbalance of insulin production as well as serious effects on the body. In search of a better treatment for diabetes, we designed a novel class of 1,3,4-thiadiazole-bearing Schiff base analogues and assessed them for the α-glucosidase enzyme. In the series (1-12), compounds are synthesized and 3 analogues showed excellent inhibitory activity against α-glucosidase enzymes in the range of IC50 values of 18.10 ± 0.20 to 1.10 ± 0.10 µM. In this series, analogues 4, 8, and 9 show remarkable inhibition profile IC50 2.20 ± 0.10, 1.10 ± 0.10, and 1.30 ± 0.10 µM by using acarbose as a standard, whose IC50 is 11.50 ± 0.30 µM. The structure of the synthesized compounds was confirmed through various spectroscopic techniques, such as NMR and HREI-MS. Additionally, molecular docking, pharmacokinetics, cytotoxic evaluation, and density functional theory study were performed to investigate their behavior.

14.
Bioorg Chem ; 143: 107094, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199139

ABSTRACT

Microtubule dynamics are critical for spindle assembly and chromosome segregation during cell division. Pharmacological inhibition of microtubule dynamics in cells causes prolonged mitotic arrest, resulting in apoptosis, an approach extensively employed in treating different types of cancers. The present study reports the synthesis of thirty-two novel bis-amides (SSE1901-SSE1932) and the evaluation of their antiproliferative activities. N-(1-oxo-3-phenyl-1-(phenylamino)propan-2-yl)benzamide (SSE1917) exhibited the most potent activity with GI50 values of 0.331 ± 0.01 µM in HCT116 colorectal and 0.48 ± 0.27 µM in BT-549 breast cancer cells. SSE1917 stabilized microtubules in biochemical and cellular assays, bound to taxol site in docking studies, and caused aberrant mitosis and G2/M arrest in cells. Prolonged treatment of cells with the compound increased p53 expression and triggered apoptotic cell death. Furthermore, SSE1917 suppressed the growth of both mouse and patient-derived human colon cancer organoids, highlighting its potential therapeutic value as an anticancer agent.


Subject(s)
Antineoplastic Agents , Tubulin Modulators , Tubulin , Animals , Humans , Mice , Amides/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Apoptosis , Cell Line, Tumor , Cell Proliferation , Microtubules/metabolism , Mitosis , Tubulin/drug effects , Tubulin/metabolism , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology
15.
Chem Biol Drug Des ; 103(1): e14372, 2024 01.
Article in English | MEDLINE | ID: mdl-37817296

ABSTRACT

Human immunodeficiency virus (HIV) causes acquired immunodeficiency syndrome (AIDS), a lethal disease that is prevalent worldwide. According to the Joint United Nations Programme on HIV/AIDS (UNAIDS) data, 38.4 million people worldwide were living with HIV in 2021. Viral reverse transcriptase (RT) is an excellent target for drug intervention. Nucleoside reverse transcriptase inhibitors (NRTIs) were the first class of approved antiretroviral drugs. Later, a new type of non-nucleoside reverse transcriptase inhibitors (NNRTIs) were approved as anti-HIV drugs. Zidovudine, didanosine, and stavudine are FDA-approved NRTIs, while nevirapine, efavirenz, and delavirdine are FDA-approved NNRTIs. Several agents are in clinical trials, including apricitabine, racivir, elvucitabine, doravirine, dapivirine, and elsulfavirine. This review addresses HIV-1 structure, replication cycle, reverse transcription, and HIV drug targets. This study focuses on NRTIs and NNRTIs, their binding sites, mechanisms of action, FDA-approved drugs and drugs in clinical trials, their resistance and adverse effects, their molecular docking studies, and highly active antiretroviral therapy (HAART).


Subject(s)
Acquired Immunodeficiency Syndrome , Anti-HIV Agents , HIV Infections , HIV-1 , Humans , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Molecular Docking Simulation , HIV Infections/drug therapy , Acquired Immunodeficiency Syndrome/chemically induced , Acquired Immunodeficiency Syndrome/drug therapy , HIV Reverse Transcriptase/metabolism
16.
Saudi Pharm J ; 32(1): 101897, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38090735

ABSTRACT

The steady increase in the use of electronic cigarettes (ECs) has reached an epidemic level, increasing mortality and morbidity, mainly due to pulmonary toxicity. Several mechanisms are involved in EC-induced toxicity, including oxidative stress and increased inflammation. Concurrently, the integrity of cellular metabolism is essential for cellular homeostasis and mitigation of toxic insults. However, the effects of EC on cellular metabolism remain largely unknown. In this study, we investigated the metabolic changes induced by EC in human lung epithelial cells (A549) using an untargeted metabolomics approach. A549 cells were exposed to increasing EC vapor extract concentrations, and cell viability, oxidative stress, and metabolomic changes were assessed. Our findings show that ECs induce cell death and increase oxidative stress in a concentration-dependent manner. Metabolomic studies demonstrated that ECs induce unique metabolic changes in key cellular metabolic pathways. Our results revealed that exposure to ECs induced clear segregation in metabolic responses which is driven significantly by number of essential metabolites such as aminoacids, fatty acids, glutathione, and pyruvate. Interstingly, our metabolomics results showed that each concentration of ECs induced unqiues pattern of metabolic changes, suggesting the complexity of ECs induced cytotoxcity. Disrupted metabolites were linked to essential cellular pathways, such as fatty acid biosynthesis, as well as glutathione, pyruvate, nicotinate and nicotinamide, and amino acid metabolisms. These results highlight the potential adverse effects of ECs on cellular metabolism and emphasize the need for further research to fully understand the long-term consequences of EC use. Overall, this study demonstrates that ECs not only induce cell death and oxidative stress but also disrupt cellular metabolism in A549 lung epithelial cells.

17.
Langmuir ; 39(49): 17903-17920, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38039288

ABSTRACT

Coral reef survival is threatened globally. One way to restore this delicate ecosystem is to enhance coral growth by the controlled propagation of coral fragments. To be sustainable, this technique requires the use of biocompatible underwater adhesives. Hydrogels based on rationally designed ultrashort self-assembling peptides (USP) are of great interest for various biological and environmental applications, due to their biocompatibility and tunable mechanical properties. Implementing superior adhesion properties to the USP hydrogel compounds is crucial in both water and high ionic strength solutions and is relevant in medical and marine environmental applications such as coral regeneration. Some marine animals secrete large quantities of the aminoacids dopa and lysine to enhance their adhesion to wet surfaces. Therefore, the addition of catechol moieties to the USP sequence containing lysine (IIZK) should improve the adhesive properties of USP hydrogels. However, it is challenging to place the catechol moiety (Do) within the USP sequence at an optimal position without compromising the hydrogel self-assembly process and mechanical properties. Here, we demonstrate that, among three USP hydrogels, DoIIZK is the least adhesive and that the adhesiveness of the IIZDoK hydrogel is compromised by its poor mechanical properties. The best adhesion outcome was achieved using the IIZKDo hydrogel, the only one to show equally sound adhesive and mechanical properties. A mechanistic understanding of this outcome is presented here. This property was confirmed by the successful gluing of coral fragments by means of IIZKDo hydrogel that are still thriving after more than three years since the deployment. The validated biocompatibility of this underwater hydrogel glue suggests that it could be advantageously implemented for other applications, such as surgical interventions.


Subject(s)
Anthozoa , Environmental Restoration and Remediation , Hydrogels , Animals , Adhesives/chemistry , Dihydroxyphenylalanine/chemistry , Ecosystem , Hydrogels/chemistry , Lysine , Peptides
18.
Small ; : e2306535, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063843

ABSTRACT

Colloidal quantum dots (CQDs) are emerging materials for short-wave infrared (SWIR, ≈1100-3000 nm) photodetectors, which are technologically important for a broad array of applications. Unfortunately, the most developed SWIR CQD systems are Pb and Hg chalcogenides; their toxicity and regulated compositions limit their applications. InSb CQD system is a potential environmentally friendly alternative, whose bandgap in theory, is tunable via quantum confinement across the SWIR spectrum. However, InSb CQDs are difficult to exploit, due to their complex syntheses and uncommon reactive precursors, which greatly hinder their application and study. Here, a one-pot synthesis strategy is reported using commercially available precursors to synthesize-under standard colloidal synthesis conditions-high-quality, size-tunable InSb CQDs. With this strategy, the large Bohr exciton radius of InSb can be exploited for tuning the bandgap of the CQDs over a wide range of wavelengths (≈1250-1860 nm) across the SWIR region. Furthermore, by changing the surface ligands of the CQDs from oleic acid (OA) to 1-dodecanthiol (DDT), a ≈20-fold lengthening in the excited-state lifetime, efficient carrier multiplication, and slower carrier annihilation are observed. The work opens a wide range of SWIR applications to a promising class of Pb- and Hg-free CQDs.

19.
ACS Mater Au ; 3(3): 242-254, 2023 May 10.
Article in English | MEDLINE | ID: mdl-38089129

ABSTRACT

Organic electrochemical transistors (OECTs) are becoming increasingly ubiquitous in various applications at the interface with biological systems. However, their widespread use is hampered by the scarcity of electron-conducting (n-type) backbones and the poor performance and stability of the existing n-OECTs. Here, we introduce organic salts as a solution additive to improve the transduction capability, shelf life, and operational stability of n-OECTs. We demonstrate that the salt-cast devices present a 10-fold increase in transconductance and achieve at least one year-long stability, while the pristine devices degrade within four months of storage. The salt-added films show improved backbone planarity and greater charge delocalization, leading to higher electronic charge carrier mobility. These films show a distinctly porous morphology where the interconnectivity is affected by the salt type, responsible for OECT speed. The salt-based films display limited changes in morphology and show lower water uptake upon electrochemical doping, a possible reason for the improved device cycling stability. Our work provides a new and easy route to improve n-type OECT performance and stability, which can be adapted for other electrochemical devices with n-type films operating at the aqueous electrolyte interface.

20.
Metabolomics ; 20(1): 7, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114836

ABSTRACT

INTRODUCTION: Nuclear Magnetic Resonance (NMR) spectroscopy stands as a preeminent analytical tool in the field of metabolomics. Nevertheless, when it comes to identifying metabolites present in scant amounts within various types of complex mixtures such as plants, honey, milk, and biological fluids and tissues, NMR-based metabolomics presents a formidable challenge. This predicament arises primarily from the fact that the signals emanating from metabolites existing in low concentrations tend to be overshadowed by the signals of highly concentrated metabolites within NMR spectra. OBJECTIVES: The aim of this study is to tackle the issue of intense sugar signals overshadowing the desired metabolite signals, an optimal pulse sequence with band-selective excitation has been proposed for the suppression of sugar's moiety signals (SSMS). This sequence serves the crucial purpose of suppressing unwanted signals, with a particular emphasis on mitigating the interference caused by sugar moieties' signals. METHODS: We have implemented this comprehensive approach to various NMR techniques, including 1D 1H presaturation (presat), 2D J-resolved (RES), 2D 1H-1H Total Correlation Spectroscopy (TOCSY), and 2D 1H-13C Heteronuclear Single Quantum Coherence (HSQC) for the samples of dates-flesh, honey, a standard stock solution of glucose, and nine amino acids, and commercial fetal bovine serum (FBS). RESULTS: The outcomes of this approach were significant. The suppression of the high-intensity sugar signals has considerably enhanced the visibility and sensitivity of the signals emanating from the desired metabolites. CONCLUSION: This, in turn, enables the identification of a greater number of metabolites. Additionally, it streamlines the experimental process, reducing the time required for the comparative quantification of metabolites in statistical studies in the field of metabolomics.


Subject(s)
Complex Mixtures , Metabolomics , Metabolomics/methods , Magnetic Resonance Spectroscopy/methods , Complex Mixtures/chemistry , Amino Acids , Glucose
SELECTION OF CITATIONS
SEARCH DETAIL