Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Immunity ; 57(2): 319-332.e6, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38295798

ABSTRACT

Tuft cells in mucosal tissues are key regulators of type 2 immunity. Here, we examined the impact of the microbiota on tuft cell biology in the intestine. Succinate induction of tuft cells and type 2 innate lymphoid cells was elevated with loss of gut microbiota. Colonization with butyrate-producing bacteria or treatment with butyrate suppressed this effect and reduced intestinal histone deacetylase activity. Epithelial-intrinsic deletion of the epigenetic-modifying enzyme histone deacetylase 3 (HDAC3) inhibited tuft cell expansion in vivo and impaired type 2 immune responses during helminth infection. Butyrate restricted stem cell differentiation into tuft cells, and inhibition of HDAC3 in adult mice and human intestinal organoids blocked tuft cell expansion. Collectively, these data define a HDAC3 mechanism in stem cells for tuft cell differentiation that is dampened by a commensal metabolite, revealing a pathway whereby the microbiota calibrate intestinal type 2 immunity.


Subject(s)
Intestinal Mucosa , Microbiota , Adult , Mice , Humans , Animals , Tuft Cells , Butyrates/pharmacology , Butyrates/metabolism , Immunity, Innate , Lymphocytes/metabolism , Intestines , Histone Deacetylases/metabolism , Cell Differentiation
2.
J Clin Invest ; 133(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36602872

ABSTRACT

Aberrant immune responses to resident microbes promote inflammatory bowel disease and other chronic inflammatory conditions. However, how microbiota-specific immunity is controlled in mucosal tissues remains poorly understood. Here, we found that mice lacking epithelial expression of microbiota-sensitive histone deacetylase 3 (HDAC3) exhibited increased accumulation of commensal-specific CD4+ T cells in the intestine, provoking the hypothesis that epithelial HDAC3 may instruct local microbiota-specific immunity. Consistent with this, microbiota-specific CD4+ T cells and epithelial HDAC3 expression were concurrently induced following early-life microbiota colonization. Further, epithelium-intrinsic ablation of HDAC3 decreased commensal-specific Tregs, increased commensal-specific Th17 cells, and promoted T cell-driven colitis. Mechanistically, HDAC3 was essential for NF-κB-dependent regulation of epithelial MHC class II (MHCII). Epithelium-intrinsic MHCII dampened local accumulation of commensal-specific Th17 cells in adult mice and protected against microbiota-triggered inflammation. Remarkably, HDAC3 enabled the microbiota to induce MHCII expression on epithelial cells and limit the number of commensal-specific T cells in the intestine. Collectively, these data reveal a central role for an epithelial histone deacetylase in directing the dynamic balance of tissue-intrinsic CD4+ T cell subsets that recognize commensal microbes and control inflammation.


Subject(s)
Intestines , Microbiota , Animals , Mice , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Immunity, Innate , Inflammation
3.
Front Immunol ; 13: 952994, 2022.
Article in English | MEDLINE | ID: mdl-36341403

ABSTRACT

Although diet has long been associated with susceptibility to infection, the dietary components that regulate host defense remain poorly understood. Here, we demonstrate that consuming rice bran decreases susceptibility to intestinal infection with Citrobacter rodentium, a murine pathogen that is similar to enteropathogenic E. coli infection in humans. Rice bran naturally contains high levels of the substance phytate. Interestingly, phytate supplementation also protected against intestinal infection, and enzymatic metabolism of phytate by commensal bacteria was necessary for phytate-induced host defense. Mechanistically, phytate consumption induced mammalian intestinal epithelial expression of STAT3-regulated antimicrobial pathways and increased phosphorylated STAT3, suggesting that dietary phytate promotes innate defense through epithelial STAT3 activation. Further, phytate regulation of epithelial STAT3 was mediated by the microbiota-sensitive enzyme histone deacetylase 3 (HDAC3). Collectively, these data demonstrate that metabolism of dietary phytate by microbiota decreases intestinal infection and suggests that consuming bran and other phytate-enriched foods may represent an effective dietary strategy for priming host immunity.


Subject(s)
Enterobacteriaceae Infections , Phytic Acid , Humans , Mice , Animals , Escherichia coli , Intestines/microbiology , Anti-Bacterial Agents , Diet , Mammals
4.
Cell Host Microbe ; 29(12): 1744-1756.e5, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34678170

ABSTRACT

Interactions between the microbiota and mammalian host are essential for defense against infection, but the microbial-derived cues that mediate this relationship remain unclear. Here, we find that intestinal epithelial cell (IEC)-associated commensal bacteria, segmented filamentous bacteria (SFB), promote early protection against the pathogen Citrobacter rodentium, independent of CD4+ T cells. SFB induced histone modifications in IECs at sites enriched for retinoic acid receptor motifs, suggesting that SFB may enhance defense through retinoic acid (RA). Consistent with this, inhibiting RA signaling suppressed SFB-induced protection. Intestinal RA levels were elevated in SFB mice, despite the inhibition of mammalian RA production, indicating that SFB directly modulate RA. Interestingly, RA was produced by intestinal bacteria, and the loss of bacterial-intrinsic aldehyde dehydrogenase activity decreased the RA levels and increased infection. These data reveal RA as an unexpected microbiota-derived metabolite that primes innate defense and suggests that pre- and probiotic approaches to elevate RA could prevent or combat infections.


Subject(s)
Bacteria/metabolism , Intestinal Diseases/metabolism , Symbiosis , Tretinoin/metabolism , Animals , Bacillus cereus , Bifidobacterium bifidum , CD4-Positive T-Lymphocytes , Citrobacter rodentium , Epithelial Cells , Histone Code , Host Microbial Interactions , Intestinal Diseases/microbiology , Male , Mice , Mice, Inbred C57BL , Microbiota , Nitric Oxide , Signal Transduction
5.
Nature ; 586(7827): 108-112, 2020 10.
Article in English | MEDLINE | ID: mdl-32731255

ABSTRACT

The coevolution of mammalian hosts and their beneficial commensal microbes has led to development of symbiotic host-microbiota relationships1. Epigenetic machinery permits mammalian cells to integrate environmental signals2; however, how these pathways are fine-tuned by diverse cues from commensal bacteria is not well understood. Here we reveal a highly selective pathway through which microbiota-derived inositol phosphate regulates histone deacetylase 3 (HDAC3) activity in the intestine. Despite the abundant presence of HDAC inhibitors such as butyrate in the intestine, we found that HDAC3 activity was sharply increased in intestinal epithelial cells of microbiota-replete mice compared with germ-free mice. This divergence was reconciled by the finding that commensal bacteria, including Escherichia coli, stimulated HDAC activity through metabolism of phytate and production of inositol-1,4,5-trisphosphate (InsP3). Both intestinal exposure to InsP3 and phytate ingestion promoted recovery following intestinal damage. Of note, InsP3 also induced growth of intestinal organoids derived from human tissue, stimulated HDAC3-dependent proliferation and countered butyrate inhibition of colonic growth. Collectively, these results show that InsP3 is a microbiota-derived metabolite that activates a mammalian histone deacetylase to promote epithelial repair. Thus, HDAC3 represents a convergent epigenetic sensor of distinct metabolites that calibrates host responses to diverse microbial signals.


Subject(s)
Gastrointestinal Microbiome/physiology , Histone Deacetylases/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Intestines/enzymology , Intestines/microbiology , Phytic Acid/metabolism , Animals , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/enzymology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestines/cytology , Intestines/pathology , Mice , Mice, Inbred C57BL , Organoids/enzymology , Organoids/metabolism , Organoids/pathology , Symbiosis
6.
Brain Res Cogn Brain Res ; 25(3): 913-25, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16257191

ABSTRACT

Aging is associated with changes in automatic processing of task-irrelevant stimuli, and this may lead to functional disturbances including repeated orienting to nonnovel events and distraction from task. The effect of age on automatic processing of time-dependent stimulus features was investigated by measurement of the auditory mismatch negativity (MMN) in younger (18-23) and older (55-85) adults. Amplitude of MMN recorded during a paradigm involving low-probability deviation in interstimulus interval (from 500 ms to 250 ms) was found to be reduced in the older group at fronto-central sites. This effect was paralleled by, and correlated to, decreased sensory gating efficiency for component N1 recorded during a separate paradigm involving alternate presentation of auditory stimuli at long (9 s) and short (0.5 s) interstimulus intervals. Further, MMN amplitude was correlated to behavioral performance on a small subset of neuropsychological tests, including the Rey Auditory Verbal Learning Test, within a group of healthy older adults. The results support the hypothesis that aging is associated with declines in automatic processing of time-dependent stimulus features, and this is related to cognitive function. These conclusions are considered in the context of age-related declines in prefrontal cortex function and associated increases in susceptibility to task-irrelevant stimuli.


Subject(s)
Aging/physiology , Attention/physiology , Acoustic Stimulation , Adolescent , Adult , Aged, 80 and over , Electroencephalography , Electrophysiology , Female , Frontal Lobe/physiology , Humans , Learning/physiology , Male , Middle Aged , Neuropsychological Tests , Psychomotor Performance/physiology , Reaction Time/physiology , Time Factors , Verbal Learning/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...