Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Int J Cancer ; 151(9): 1586-1601, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35666536

ABSTRACT

Epigenetic dysregulation is an important feature of colorectal cancer (CRC). Combining epigenetic drugs with other antineoplastic agents is a promising treatment strategy for advanced cancers. Here, we exploited the concept of synthetic lethality to identify epigenetic targets that act synergistically with histone deacetylase (HDAC) inhibitors to reduce the growth of CRC. We applied a pooled CRISPR-Cas9 screen using a custom sgRNA library directed against 614 epigenetic regulators and discovered that knockout of the euchromatic histone-lysine N-methyltransferases 1 and 2 (EHMT1/2) strongly enhanced the antiproliferative effect of clinically used HDAC inhibitors. Using tissue microarrays from 1066 CRC samples with different tumor stages, we showed that low EHMT2 protein expression is predominantly found in advanced CRC and associated with poor clinical outcome. Cotargeting of HDAC and EHMT1/2 with specific small molecule inhibitors synergistically reduced proliferation of CRC cell lines. Mechanistically, we used a high-throughput Western blot assay to demonstrate that both inhibitors elicited distinct cellular mechanisms to reduce tumor growth, including cell cycle arrest and modulation of autophagy. On the epigenetic level, the compounds increased H3K9 acetylation and reduced H3K9 dimethylation. Finally, we used a panel of patient-derived CRC organoids to show that HDAC and EHMT1/2 inhibition synergistically reduced tumor viability in advanced models of CRC.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Acetylation , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans
2.
J Immunother Cancer ; 9(7)2021 07.
Article in English | MEDLINE | ID: mdl-34285105

ABSTRACT

M2 macrophages promote tumor progression and therapy resistance, whereas proimmunogenic M1 macrophages can contribute to the efficacy of cytostatic and immunotherapeutic strategies. The abundance of M2 macrophages in the immune infiltrate of many cancer types has prompted the search for strategies to target and eliminate this subset. From our prior experiments in syngeneic mouse tumor models, we learned that pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) did not merely result in tumor cell death, but also in the modulation of the tumor immune infiltrate. This included a prominent decrease in the numbers of macrophages as well as an increase in the M1/M2 macrophage ratio. Investigation of the mechanism underlying this finding in primary murine macrophage cultures revealed that M2 macrophages are significantly more sensitive to MEK inhibition-induced cell death than their M1 counterparts. Further analyses showed that the p38 MAPK pathway, which is activated in M1 macrophages only, renders these cells resistant to death by MEK inhibition. In conclusion, the dependency of M2 macrophages on the MEK/extracellular-signal regulated kinase (ERK) pathway empowers MEK inhibitors to selectively eliminate this subset from the tumor microenvironment.


Subject(s)
Immunomodulation/immunology , Macrophages/metabolism , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism , Humans , Signal Transduction , Tumor Microenvironment
3.
Pain ; 162(7): 2070-2086, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33492035

ABSTRACT

ABSTRACT: After surgery, acute pain is still managed insufficiently and may lead to short-term and long-term complications including chronic postsurgical pain and an increased prescription of opioids. Thus, identifying new targets specifically implicated in postoperative pain is of utmost importance to develop effective and nonaddictive analgesics. Here, we used an integrated and multimethod workflow to reveal unprecedented insights into proteome dynamics in dorsal root ganglia (DRG) of mice after plantar incision (INC). Based on a detailed characterization of INC-associated pain-related behavior profiles, including a novel paradigm for nonevoked pain, we performed quantitative mass-spectrometry-based proteomics in DRG 1 day after INC. Our data revealed a hitherto unknown INC-regulated protein signature in DRG with changes in distinct proteins and cellular signaling pathways. In particular, we show the differential regulation of 44 protein candidates, many of which are annotated with pathways related to immune and inflammatory responses such as MAPK/extracellular signal-regulated kinases signaling. Subsequent orthogonal assays comprised multiplex Western blotting, bioinformatic protein network analysis, and immunolabeling in independent mouse cohorts to validate (1) the INC-induced regulation of immune/inflammatory pathways and (2) the high priority candidate Annexin A1. Taken together, our results propose novel potential targets in the context of incision and, therefore, represent a highly valuable resource for further mechanistic and translational studies of postoperative pain.


Subject(s)
Acute Pain , Ganglia, Spinal , Animals , Mice , Pain, Postoperative , Proteome , Rats , Rats, Sprague-Dawley
4.
Lab Invest ; 100(10): 1288-1299, 2020 10.
Article in English | MEDLINE | ID: mdl-32601356

ABSTRACT

Histomorphology and immunohistochemistry are the most common ways of cancer classification in routine cancer diagnostics, but often reach their limits in determining the organ origin in metastasis. These cancers of unknown primary, which are mostly adenocarcinomas or squamous cell carcinomas, therefore require more sophisticated methodologies of classification. Here, we report a multiplex protein profiling-based approach for the classification of fresh frozen and formalin-fixed paraffin-embedded (FFPE) cancer tissue samples using the digital western blot technique DigiWest. A DigiWest-compatible FFPE extraction protocol was developed, and a total of 634 antibodies were tested in an initial set of 16 FFPE samples covering tumors from different origins. Of the 303 detected antibodies, 102 yielded significant correlation of signals in 25 pairs of fresh frozen and FFPE primary tumor samples, including head and neck squamous cell carcinomas (HNSC), lung squamous cell carcinomas (LUSC), lung adenocarcinomas (LUAD), colorectal adenocarcinomas (COAD), and pancreatic adenocarcinomas (PAAD). For this signature of 102 analytes (covering 88 total proteins and 14 phosphoproteins), a support vector machine (SVM) algorithm was developed. This allowed for the classification of the tissue of origin for all five tumor types studied here with high overall accuracies in both fresh frozen (90.4%) and FFPE (77.6%) samples. In addition, the SVM classifier reached an overall accuracy of 88% in an independent validation cohort of 25 FFPE tumor samples. Our results indicate that DigiWest-based protein profiling represents a valuable method for cancer classification, yielding conclusive and decisive data not only from fresh frozen specimens but also FFPE samples, thus making this approach attractive for routine clinical applications.


Subject(s)
Blotting, Western/methods , Neoplasms/classification , Protein Array Analysis/methods , Algorithms , Biomarkers, Tumor/metabolism , Blotting, Western/statistics & numerical data , Cryopreservation , Formaldehyde , Humans , Neoplasm Proteins/metabolism , Neoplasms/diagnosis , Neoplasms/metabolism , Organ Specificity , Paraffin Embedding , Protein Array Analysis/statistics & numerical data , Support Vector Machine , Tissue Fixation
5.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118722, 2020 08.
Article in English | MEDLINE | ID: mdl-32302667

ABSTRACT

Dermal fibroblasts seem critical for epidermal maturation and differentiation and recent work demonstrated that diseased fibroblasts may drive pathophysiological processes. Nevertheless, still very little is known about the actual crosstalk between epidermal keratinocytes and dermal fibroblasts and the impact of dermal fibroblasts on epidermal maturation and differentiation. Aiming for a more fundamental understanding of the impact of the cellular crosstalk between keratinocytes and fibroblasts on the skin homeostasis, we generated full-thickness skin equivalents with and without fibroblasts and subsequently analysed them for the expression of skin differentiation markers, their barrier function, skin lipid content and epidermal cell signalling. Skin equivalents without fibroblasts consistently showed an impaired differentiation and dysregulated expression of skin barrier and tight junction proteins, increased skin permeability, and a decreased skin lipid/protein ratio. Most interestingly, impaired Ras/Raf/ERK/MEK signalling was evident in skin equivalents without fibroblasts. Our data clearly indicate that the epidermal-dermal crosstalk between keratinocytes and fibroblasts is critical for adequate skin differentiation and that fibroblasts orchestrate epidermal differentiation processes.


Subject(s)
Epidermal Cells/metabolism , Fibroblasts/metabolism , Homeostasis/physiology , Keratinocytes/metabolism , Skin/metabolism , Cell Differentiation , Epidermal Cells/pathology , Epidermis/metabolism , Homeostasis/genetics , Humans , Keratinocytes/pathology , Permeability , Skin/pathology , Skin Absorption
6.
Sci Rep ; 9(1): 7258, 2019 05 10.
Article in English | MEDLINE | ID: mdl-31076619

ABSTRACT

Pooled human platelet lysate (pHPL) is increasingly used as replacement of animal serum for manufacturing of stromal cell therapeutics. Porcine heparin is commonly applied to avoid clotting of pHPL-supplemented medium but the influence of heparin on cell behavior is still unclear. Aim of this study was to investigate cellular uptake of heparin by fluoresceinamine-labeling and its impact on expression of genes, proteins and function of human stromal cells derived from bone marrow (BM), umbilical cord (UC) and white adipose tissue (WAT). Cells were isolated and propagated using various pHPL-supplemented media with or without heparin. Flow cytometry and immunocytochemistry showed differential cellular internalization and lysosomal accumulation of heparin. Transcriptome profiling revealed regulation of distinct gene sets by heparin including signaling cascades involved in proliferation, cell adhesion, apoptosis, inflammation and angiogenesis, depending on stromal cell origin. The influence of heparin on the WNT, PDGF, NOTCH and TGFbeta signaling pathways was further analyzed by a bead-based western blot revealing most alterations in BM-derived stromal cells. Despite these observations heparin had no substantial effect on long-term proliferation and in vitro tri-lineage differentiation of stromal cells, indicating compatibility for clinically applied cell products.


Subject(s)
Gene Expression/physiology , Heparin/metabolism , Stromal Cells/metabolism , Blood Platelets/metabolism , Bone Marrow/metabolism , Bone Marrow Cells/metabolism , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cell Proliferation/physiology , Cells, Cultured , Humans , Serum/metabolism , Signal Transduction/physiology , Umbilical Cord/metabolism
7.
Nat Commun ; 10(1): 2197, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31097693

ABSTRACT

In colorectal cancer (CRC), aberrant Wnt signalling is essential for tumorigenesis and maintenance of cancer stem cells. However, how other oncogenic pathways converge on Wnt signalling to modulate stem cell homeostasis in CRC currently remains poorly understood. Using large-scale compound screens in CRC, we identify MEK1/2 inhibitors as potent activators of Wnt/ß-catenin signalling. Targeting MEK increases Wnt activity in different CRC cell lines and murine intestine in vivo. Truncating mutations of APC generated by CRISPR/Cas9 strongly synergize with MEK inhibitors in enhancing Wnt responses in isogenic CRC models. Mechanistically, we demonstrate that MEK inhibition induces a rapid downregulation of AXIN1. Using patient-derived CRC organoids, we show that MEK inhibition leads to increased Wnt activity, elevated LGR5 levels and enrichment of gene signatures associated with stemness and cancer relapse. Our study demonstrates that clinically used MEK inhibitors inadvertently induce stem cell plasticity, revealing an unknown side effect of RAS pathway inhibition.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Neoplastic Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Wnt Signaling Pathway/drug effects , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Animals , Antineoplastic Agents/therapeutic use , Biopsy , CRISPR-Cas Systems/genetics , Carcinogenesis/drug effects , Cell Line, Tumor , Cell Plasticity/drug effects , Colorectal Neoplasms/pathology , Down-Regulation , Female , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Intestines/cytology , Intestines/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Mitogen-Activated Protein Kinase Kinases/metabolism , Protein Kinase Inhibitors/therapeutic use , Proteomics , Xenograft Model Antitumor Assays , ras Proteins/metabolism
8.
PLoS Genet ; 15(3): e1008076, 2019 03.
Article in English | MEDLINE | ID: mdl-30925167

ABSTRACT

Organoid cultures derived from colorectal cancer (CRC) samples are increasingly used as preclinical models for studying tumor biology and the effects of targeted therapies under conditions capturing in vitro the genetic make-up of heterogeneous and even individual neoplasms. While 3D cultures are initiated from surgical specimens comprising multiple cell populations, the impact of tumor heterogeneity on drug effects in organoid cultures has not been addressed systematically. Here we have used a cohort of well-characterized CRC organoids to study the influence of tumor heterogeneity on the activity of the KRAS/MAPK-signaling pathway and the consequences of treatment by inhibitors targeting EGFR and downstream effectors. MAPK signaling, analyzed by targeted proteomics, shows unexpected heterogeneity irrespective of RAS mutations and is associated with variable responses to EGFR inhibition. In addition, we obtained evidence for intratumoral heterogeneity in drug response among parallel "sibling" 3D cultures established from a single KRAS-mutant CRC. Our results imply that separate testing of drug effects in multiple subpopulations may help to elucidate molecular correlates of tumor heterogeneity and to improve therapy response prediction in patients.


Subject(s)
Cell Culture Techniques/methods , Colorectal Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Line, Tumor , Cohort Studies , Colorectal Neoplasms/physiopathology , Drug Resistance, Neoplasm/genetics , Female , Genes, erbB-1 , Humans , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/physiology , Male , Mutation , Organoids/metabolism , Organoids/physiology , Protein Kinase Inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/physiology , Signal Transduction , ras Proteins/genetics
9.
J Extracell Vesicles ; 6(1): 1378056, 2017.
Article in English | MEDLINE | ID: mdl-29184623

ABSTRACT

Extracellular vesicles (EVs) are membrane particles secreted from cells into all body fluids. Several EV populations exist differing in size and cellular origin. Using differential centrifugation EVs pelleting at 14,000 g ("microvesicles" (MV)) and 100,000 g ("exosomes") are distinguishable by protein markers. Neutral sphingomyelinase (nSMase) inhibition has been shown to inhibit exosome release from cells and has since been used to study their functional implications. How nSMases (also known as SMPD2 and SMPD3) affect the basal secretion of MVs is unclear. Here we investigated how SMPD2/3 impact both EV populations. SMPD2/3 inhibition by GW4869 or RNAi decreases secretion of exosomes, but also increases secretion of MVs from the plasma membrane. Both populations differ significantly in metabolite composition and Wnt proteins are specifically loaded onto MVs under these conditions. Taken together, our data reveal a novel regulatory function of SMPD2/3 in vesicle budding from the plasma membrane and clearly suggest that - despite the different vesicle biogenesis - the routes of vesicular export are adaptable.

10.
Sci Signal ; 10(461)2017 01 10.
Article in English | MEDLINE | ID: mdl-28074006

ABSTRACT

Wnt signaling plays an important role in the self-renewal and differentiation of stem cells. The secretion of Wnt ligands requires Evi (also known as Wls). Genetically ablating Evi provides an experimental approach to studying the consequence of depleting all redundant Wnt proteins, and overexpressing Evi enables a nonspecific means of increasing Wnt signaling. We generated Evi-deficient and Evi-overexpressing mouse embryonic stem cells (ESCs) to analyze the role of autocrine Wnt production in self-renewal and differentiation. Self-renewal was reduced in Evi-deficient ESCs and increased in Evi-overexpressing ESCs in the absence of leukemia inhibitory factor, which supports the self-renewal of ESCs. The differentiation of ESCs into cardiomyocytes was enhanced when Evi was overexpressed and teratoma formation and growth of Evi-deficient ESCs in vivo were impaired, indicating that autocrine Wnt ligands were necessary for ESC differentiation and survival. ESCs lacking autocrine Wnt signaling had mitotic defects and showed genomic instability. Together, our study demonstrates that autocrine Wnt secretion is important for the survival, chromosomal stability, differentiation, and tumorigenic potential of ESCs.


Subject(s)
Autocrine Communication , Cell Proliferation/genetics , Genomic Instability , Mouse Embryonic Stem Cells/metabolism , Wnt Proteins/genetics , Animals , Cell Differentiation/genetics , Cell Self Renewal , Cell Survival/genetics , Cells, Cultured , Gene Expression Profiling , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mouse Embryonic Stem Cells/transplantation , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway
11.
PLoS One ; 11(6): e0155999, 2016.
Article in English | MEDLINE | ID: mdl-27248690

ABSTRACT

Cellular signalling pathways consolidate multiple molecular interactions into working models of signal propagation, amplification, and modulation. They are described and visualized as networks. Adjusting network topologies to experimental data is a key goal of systems biology. While network reconstruction algorithms like nested effects models are well established tools of computational biology, their data requirements can be prohibitive for their practical use. In this paper we suggest focussing on well defined aspects of a pathway and develop the computational tools to do so. We adapt the framework of nested effect models to focus on a specific aspect of activated Wnt signalling in HCT116 colon cancer cells: Does the activation of Wnt target genes depend on the secretion of Wnt ligands or do mutations in the signalling molecule ß-catenin make this activation independent from them? We framed this question into two competing classes of models: Models that depend on Wnt ligands secretion versus those that do not. The model classes translate into restrictions of the pathways in the network topology. Wnt dependent models are more flexible than Wnt independent models. Bayes factors are the standard Bayesian tool to compare different models fairly on the data evidence. In our analysis, the Bayes factors depend on the number of potential Wnt signalling target genes included in the models. Stability analysis with respect to this number showed that the data strongly favours Wnt ligands dependent models for all realistic numbers of target genes.


Subject(s)
Models, Theoretical , Algorithms , Bayes Theorem , Cell Line, Tumor , Humans , Signal Transduction , Wnt Proteins/metabolism
12.
Cancer Metab ; 3: 11, 2015.
Article in English | MEDLINE | ID: mdl-26500770

ABSTRACT

BACKGROUND: Numerous studies have demonstrated that functional mitochondria are required for tumorigenesis, suggesting that mitochondrial oxidative phosphorylation (OXPHOS) might be a potential target for cancer therapy. In this study, we investigated the effects of BAY 87-2243, a small molecule that inhibits the first OXPHOS enzyme (complex I), in melanoma in vitro and in vivo. RESULTS: BAY 87-2243 decreased mitochondrial oxygen consumption and induced partial depolarization of the mitochondrial membrane potential. This was associated with increased reactive oxygen species (ROS) levels, lowering of total cellular ATP levels, activation of AMP-activated protein kinase (AMPK), and reduced cell viability. The latter was rescued by the antioxidant vitamin E and high extracellular glucose levels (25 mM), indicating the involvement of ROS-induced cell death and a dependence on glycolysis for cell survival upon BAY 87-2243 treatment. BAY 87-2243 significantly reduced tumor growth in various BRAF mutant melanoma mouse xenografts and patient-derived melanoma mouse models. Furthermore, we provide evidence that inhibition of mutated BRAF using the specific small molecule inhibitor vemurafenib increased the OXPHOS dependency of BRAF mutant melanoma cells. As a consequence, the combination of both inhibitors augmented the anti-tumor effect of BAY 87-2243 in a BRAF mutant melanoma mouse xenograft model. CONCLUSIONS: Taken together, our results suggest that complex I inhibition has potential clinical applications as a single agent in melanoma and also might be efficacious in combination with BRAF inhibitors in the treatment of patients with BRAF mutant melanoma.

13.
Genome Med ; 7(1): 46, 2015.
Article in English | MEDLINE | ID: mdl-26120366

ABSTRACT

Mesenchymal stem cells (MSCs) are promising candidates for cellular therapies ranging from tissue repair in regenerative medicine to immunomodulation in graft versus host disease after allogeneic transplantation or in autoimmune diseases. Nonetheless, progress has been hampered by their enormous phenotypic as well as functional heterogeneity and the lack of uniform standards and guidelines for quality control. In this study, we describe a method to perform cellular phenotyping by high-throughput RNA interference in primary human bone marrow MSCs. We have shown that despite heterogeneity of MSC populations, robust functional assays can be established that are suitable for high-throughput and high-content screening. We profiled primary human MSCs against human fibroblasts. Network analysis showed a kinome fingerprint that differs from human primary fibroblasts as well as fibroblast cell lines. In conclusion, this study shows that high-throughput screening in primary human MSCs can be reliably used for kinome fingerprinting.

14.
PLoS One ; 10(5): e0127146, 2015.
Article in English | MEDLINE | ID: mdl-26010451

ABSTRACT

Next generation sequencing (NGS) is an emerging technology becoming relevant for genotyping of clinical samples. Here, we assessed the stability of amplicon sequencing from formalin-fixed paraffin-embedded (FFPE) and paired frozen samples from colorectal cancer metastases with different analysis pipelines. 212 amplicon regions in 48 cancer related genes were sequenced with Illumina MiSeq using DNA isolated from resection specimens from 17 patients with colorectal cancer liver metastases. From ten of these patients, paired fresh frozen and routinely processed FFPE tissue was available for comparative study. Sample quality of FFPE tissues was determined by the amount of amplifiable DNA using qPCR, sequencing libraries were evaluated using Bioanalyzer. Three bioinformatic pipelines were compared for analysis of amplicon sequencing data. Selected hot spot mutations were reviewed using Sanger sequencing. In the sequenced samples from 16 patients, 29 non-synonymous coding mutations were identified in eleven genes. Most frequent were mutations in TP53 (10), APC (7), PIK3CA (3) and KRAS (2). A high concordance of FFPE and paired frozen tissue samples was observed in ten matched samples, revealing 21 identical mutation calls and only two mutations differing. Comparison of these results with two other commonly used variant calling tools, however, showed high discrepancies. Hence, amplicon sequencing can potentially be used to identify hot spot mutations in colorectal cancer metastases in frozen and FFPE tissue. However, remarkable differences exist among results of different variant calling tools, which are not only related to DNA sample quality. Our study highlights the need for standardization and benchmarking of variant calling pipelines, which will be required for translational and clinical applications.


Subject(s)
Colorectal Neoplasms/genetics , High-Throughput Nucleotide Sequencing , Mutation , Neoplasm Proteins/genetics , Real-Time Polymerase Chain Reaction , Colorectal Neoplasms/metabolism , Female , Humans , Male , Neoplasm Proteins/metabolism
15.
Nat Commun ; 4: 2610, 2013.
Article in English | MEDLINE | ID: mdl-24162018

ABSTRACT

Aberrant regulation of the Wnt/ß-catenin pathway has an important role during the onset and progression of colorectal cancer, with over 90% of cases of sporadic colon cancer featuring mutations in APC or ß-catenin. However, it has remained a point of controversy whether these mutations are sufficient to activate the pathway or require additional upstream signals. Here we show that colorectal tumours express elevated levels of Wnt3 and Evi/Wls/GPR177. We found that in colon cancer cells, even in the presence of mutations in APC or ß-catenin, downstream signalling remains responsive to Wnt ligands and receptor proximal signalling. Furthermore, we demonstrate that truncated APC proteins bind ß-catenin and key components of the destruction complex. These results indicate that cells with mutations in APC or ß-catenin depend on Wnt ligands and their secretion for a sufficient level of ß-catenin signalling, which potentially opens new avenues for therapeutic interventions by targeting Wnt secretion via Evi/Wls.


Subject(s)
Adenocarcinoma/genetics , Adenomatous Polyposis Coli Protein/genetics , Colonic Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Wnt3 Protein/genetics , beta Catenin/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenomatous Polyposis Coli Protein/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Colon/metabolism , Colon/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred NOD , Mutation , Neoplasm Transplantation , Receptor, EphB2/genetics , Receptor, EphB2/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Wnt3 Protein/metabolism , beta Catenin/metabolism
16.
Cell Rep ; 4(6): 1224-34, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24035388

ABSTRACT

Wnt/ß-catenin signaling plays an important role in embryonic development and adult tissue homeostasis. When Wnt ligands bind to the receptor complex, LRP5/6 coreceptors are activated by phosphorylation and concomitantly endocytosed. In vertebrates, Wnt ligands induce caveolin-dependent endocytosis of LRP6 to relay signal downstream, whereas antagonists such as Dickkopf promote clathrin-dependent endocytosis, leading to inhibition. However, little is known about how LRP6 is directed to different internalization mechanisms, and how caveolin-dependent endocytosis is mediated. In an RNAi screen, we identified the Rab GTPase RAB8B as being required for Wnt/ß-catenin signaling. RAB8B depletion reduces LRP6 activity, ß-catenin accumulation, and induction of Wnt target genes, whereas RAB8B overexpression promotes LRP6 activity and internalization and rescues inhibition of caveolar endocytosis. In Xenopus laevis and Danio rerio, RAB8B morphants show lower Wnt activity during embryonic development. Our results implicate RAB8B as an essential evolutionary conserved component of Wnt/ß-catenin signaling through regulation of LRP6 activity and endocytosis.


Subject(s)
Endocytosis/physiology , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Oncogene Proteins/metabolism , Wnt Proteins/genetics , Animals , HEK293 Cells , HeLa Cells , Humans , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Oncogene Proteins/genetics , Phosphorylation , Signal Transduction , Transfection , Wnt Proteins/metabolism , Xenopus , Zebrafish , rab GTP-Binding Proteins
17.
Biotechnol J ; 7(6): 768-78, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22653826

ABSTRACT

High-throughput RNAi or small molecule screens have proven to be powerful methodologies for the systematic dissection of cellular processes. In model organisms and cell lines, large-scale screens have identified key components of many cellular pathways and helped to identify novel targets in disease-relevant pathways. Image-based high-content screening has become an increasingly important tool in high-throughput screening, enabling changes in phenotype characteristics, such as cell morphology and cell differentiation, to be monitored. In this review, we discuss the use of image-based screening approaches to explore the behavior of adult, embryonic, and induced pluripotent stem cells. First, we review how current pluripotency and differentiation assays can be adapted to high-throughput formats. We then describe general aspects of image-based screening of cells and present an outlook on challenges for screening stem cells.


Subject(s)
High-Throughput Screening Assays/methods , Stem Cells/cytology , Stem Cells/physiology , Animals , Cell Differentiation/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , High-Throughput Screening Assays/instrumentation , Humans , Image Processing, Computer-Assisted , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology
18.
PLoS One ; 6(12): e28338, 2011.
Article in English | MEDLINE | ID: mdl-22162763

ABSTRACT

Cell-based high-throughput RNAi screening has become a powerful research tool in addressing a variety of biological questions. In RNAi screening, one of the most commonly applied assay system is measuring the fitness of cells that is usually quantified using fluorescence, luminescence and absorption-based readouts. These methods, typically implemented and scaled to large-scale screening format, however often only yield limited information on the cell fitness phenotype due to evaluation of a single and indirect physiological indicator. To address this problem, we have established a cell fitness multiplexing assay which combines a biochemical approach and two fluorescence-based assaying methods. We applied this assay in a large-scale RNAi screening experiment with siRNA pools targeting the human kinome in different modified HEK293 cell lines. Subsequent analysis of ranked fitness phenotypes assessed by the different assaying methods revealed average phenotype intersections of 50.7±2.3%-58.7±14.4% when two indicators were combined and 40-48% when a third indicator was taken into account. From these observations we conclude that combination of multiple fitness measures may decrease false-positive rates and increases confidence for hit selection. Our robust experimental and analytical method improves the classical approach in terms of time, data comprehensiveness and cost.


Subject(s)
RNA Interference , Adenosine Triphosphate/chemistry , Benzimidazoles/pharmacology , Cell Survival , Cytoplasm/metabolism , False Positive Reactions , Fluoresceins/pharmacology , Fluorescent Dyes/pharmacology , HEK293 Cells , Humans , Phenotype , RNA, Small Interfering/metabolism , Reproducibility of Results , Research Design
19.
Biotechnol J ; 5(4): 368-76, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20349460

ABSTRACT

RNA interference (RNAi) has become a powerful tool to dissect cellular pathways and characterize gene functions. The availability of genome-wide RNAi libraries for various model organisms and mammalian cells has enabled high-throughput RNAi screenings. These RNAi screens successfully identified key components that had previously been missed in classical forward genetic screening approaches and allowed the assessment of combined loss-of-function phenotypes. Crucially, the quality of RNAi screening results depends on quantitative assays and the choice of the right biological context. In this review, we provide an overview on the design and application of high-throughput RNAi screens as well as data analysis and candidate validation strategies.


Subject(s)
Gene Targeting/methods , Genetic Testing/methods , RNA Interference/physiology , RNA, Small Interfering/genetics , Signal Transduction/genetics , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...