Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 85(18): 9623-36, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21715477

ABSTRACT

Maize streak virus strain A (MSV-A), the causal agent of maize streak disease, is today one of the most serious biotic threats to African food security. Determining where MSV-A originated and how it spread transcontinentally could yield valuable insights into its historical emergence as a crop pathogen. Similarly, determining where the major extant MSV-A lineages arose could identify geographical hot spots of MSV evolution. Here, we use model-based phylogeographic analyses of 353 fully sequenced MSV-A isolates to reconstruct a plausible history of MSV-A movements over the past 150 years. We show that since the probable emergence of MSV-A in southern Africa around 1863, the virus spread transcontinentally at an average rate of 32.5 km/year (95% highest probability density interval, 15.6 to 51.6 km/year). Using distinctive patterns of nucleotide variation caused by 20 unique intra-MSV-A recombination events, we tentatively classified the MSV-A isolates into 24 easily discernible lineages. Despite many of these lineages displaying distinct geographical distributions, it is apparent that almost all have emerged within the past 4 decades from either southern or east-central Africa. Collectively, our results suggest that regular analysis of MSV-A genomes within these diversification hot spots could be used to monitor the emergence of future MSV-A lineages that could affect maize cultivation in Africa.


Subject(s)
Evolution, Molecular , Maize streak virus/genetics , Maize streak virus/isolation & purification , Phylogeography , Plant Diseases/virology , Zea mays/virology , Africa , Cluster Analysis , DNA, Viral/chemistry , DNA, Viral/genetics , Maize streak virus/classification , Molecular Epidemiology , Molecular Sequence Data , Sequence Analysis, DNA
2.
J Gen Virol ; 91(Pt 4): 1077-81, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20032206

ABSTRACT

Geminiviruses of the genera Begomovirus and Curtovirus utilize three replication modes: complementary-strand replication (CSR), rolling-circle replication (RCR) and recombination-dependent replication (RDR). Using two-dimensional gel electrophoresis, we now show for the first time that maize streak virus (MSV), the type member of the most divergent geminivirus genus, Mastrevirus, does the same. Although mastreviruses have fewer regulatory genes than other geminiviruses and uniquely express their replication-associated protein (Rep) from a spliced transcript, the replicative intermediates of CSR, RCR and RDR could be detected unequivocally within infected maize tissues. All replicative intermediates accumulated early and, to varying degrees, were already present in the shoot apex and leaves at different maturation stages. Relative to other replicative intermediates, those associated with RCR increased in prevalence during leaf maturation. Interestingly, in addition to RCR-associated DNA forms seen in other geminiviruses, MSV also apparently uses dimeric open circular DNA as a template for RCR.


Subject(s)
Maize streak virus/physiology , Virus Replication , Zea mays/virology , Maize streak virus/genetics , Plant Leaves/growth & development , Polymerase Chain Reaction , Recombination, Genetic , Zea mays/growth & development
3.
J Gen Virol ; 89(Pt 9): 2063-2074, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18753214

ABSTRACT

Maize streak virus (MSV; family Geminiviridae, genus Mastrevirus), the causal agent of maize streak disease, ranks amongst the most serious biological threats to food security in subSaharan Africa. Although five distinct MSV strains have been currently described, only one of these - MSV-A - causes severe disease in maize. Due primarily to their not being an obvious threat to agriculture, very little is known about the 'grass-adapted' MSV strains, MSV-B, -C, -D and -E. Since comparing the genetic diversities, geographical distributions and natural host ranges of MSV-A with the other MSV strains could provide valuable information on the epidemiology, evolution and emergence of MSV-A, we carried out a phylogeographical analysis of MSVs found in uncultivated indigenous African grasses. Amongst the 83 new MSV genomes presented here, we report the discovery of six new MSV strains (MSV-F to -K). The non-random recombination breakpoint distributions detectable with these and other available mastrevirus sequences partially mirror those seen in begomoviruses, implying that the forces shaping these breakpoint patterns have been largely conserved since the earliest geminivirus ancestors. We present evidence that the ancestor of all MSV-A variants was the recombinant progeny of ancestral MSV-B and MSV-G/-F variants. While it remains unknown whether recombination influenced the emergence of MSV-A in maize, our discovery that MSV-A variants may both move between and become established in different regions of Africa with greater ease, and infect more grass species than other MSV strains, goes some way towards explaining why MSV-A is such a successful maize pathogen.


Subject(s)
Maize streak virus/genetics , Maize streak virus/pathogenicity , Africa , Base Sequence , Conserved Sequence , DNA, Viral/genetics , Food Microbiology , Geminiviridae/classification , Geminiviridae/genetics , Genome, Viral , Maize streak virus/classification , Maize streak virus/isolation & purification , Molecular Sequence Data , Phylogeny , Plant Diseases/virology , Poaceae/virology , Recombination, Genetic , Reunion , Virulence/genetics , Zea mays/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...