Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
Life Sci Alliance ; 7(3)2024 Mar.
Article En | MEDLINE | ID: mdl-38110222

Hematopoietic stem and progenitor cells (HSPCs) are known to respond to acute inflammation; however, little is understood about the dynamics and heterogeneity of these stress responses in HSPCs. Here, we performed single-cell sequencing during the sensing, response, and recovery phases of the inflammatory response of HSPCs to treatment (a total of 10,046 cells from four time points spanning the first 72 h of response) with the pro-inflammatory cytokine IFNα to investigate the HSPCs' dynamic changes during acute inflammation. We developed the essential novel computational approaches to process and analyze the resulting single-cell time series dataset. This includes an unbiased cell type annotation and abundance analysis post inflammation, tools for identification of global and cell type-specific responding genes, and a semi-supervised linear regression approach for response pseudotime reconstruction. We discovered a variety of different gene responses of the HSPCs to the treatment. Interestingly, we were able to associate a global reduced myeloid differentiation program and a locally enhanced pyroptosis activity with reduced myeloid progenitor and differentiated cells after IFNα treatment. Altogether, the single-cell time series analyses have allowed us to unbiasedly study the heterogeneous and dynamic impact of IFNα on the HSPCs.


Hematopoiesis , Hematopoietic Stem Cells , Humans , Time Factors , Cell Differentiation/genetics , Hematopoiesis/genetics , Inflammation/metabolism
2.
Cells Dev ; 174: 203844, 2023 06.
Article En | MEDLINE | ID: mdl-37100116

Just over one decade ago, it was discovered that hematopoietic stem cells (HSCs) could directly respond to inflammatory cytokines by mounting a proliferative response thought to mediate the emergency production of mature blood cells. In the intervening years, we have gained mechanistic insight into this so-called activation process and have started to learn such a response may come at a cost in terms of ultimately resulting in HSC exhaustion and hematologic dysfunction. In this review article, we report the progress we have made in understanding the interplay between infection, inflammation and HSCs during the funding period of the Collaborative Research Center 873 "Maintenance and Differentiation of Stem Cells in Development and Disease", and place this work within the context of recent output by others working within this field.


Hematopoiesis , Hematopoietic Stem Cells , Humans , Hematopoiesis/physiology , Cell Differentiation , Cytokines , Inflammation
3.
Cell Rep ; 41(1): 111447, 2022 10 04.
Article En | MEDLINE | ID: mdl-36198277

Respiratory tract infections are among the deadliest communicable diseases worldwide. Severe cases of viral lung infections are often associated with a cytokine storm and alternating platelet numbers. We report that hematopoietic stem and progenitor cells (HSPCs) sense a non-systemic influenza A virus (IAV) infection via inflammatory cytokines. Irrespective of antiviral treatment or vaccination, at a certain threshold of IAV titer in the lung, CD41-positive hematopoietic stem cells (HSCs) enter the cell cycle while endothelial protein C receptor-positive CD41-negative HSCs remain quiescent. Active CD41-positive HSCs represent the source of megakaryocytes, while their multi-lineage reconstitution potential is reduced. This emergency megakaryopoiesis is thrombopoietin independent and attenuated in IAV-infected interleukin-1 receptor-deficient mice. Newly produced platelets during IAV infection are immature and hyper-reactive. After viral clearance, HSC quiescence is re-established. Our study reveals that non-systemic viral respiratory infection has an acute impact on HSCs via inflammatory cytokines to counteract IAV-induced thrombocytopenia.


Influenza A virus , Influenza, Human , Animals , Antiviral Agents/metabolism , Cytokines/metabolism , Endothelial Protein C Receptor/metabolism , Hematopoiesis , Humans , Influenza, Human/metabolism , Megakaryocytes/metabolism , Mice , Receptors, Interleukin-1/metabolism , Thrombopoietin/metabolism
4.
PLoS Comput Biol ; 18(9): e1010031, 2022 09.
Article En | MEDLINE | ID: mdl-36170235

A few years ago, it was proposed to use the simultaneous quantification of unspliced and spliced messenger RNA (mRNA) to add a temporal dimension to high-throughput snapshots of single cell RNA sequencing data. This concept can yield additional insight into the transcriptional dynamics of the biological systems under study. However, current methods for inferring cell state velocities from such data (known as RNA velocities) are afflicted by several theoretical and computational problems, hindering realistic and reliable velocity estimation. We discuss these issues and propose new solutions for addressing some of the current challenges in consistency of data processing, velocity inference and visualisation. We translate our computational conclusion in two velocity analysis tools: one detailed method κ-velo and one heuristic method eco-velo, each of which uses a different set of assumptions about the data.


RNA, Messenger , RNA, Messenger/genetics , Sequence Analysis, RNA/methods
5.
Cell Stem Cell ; 29(8): 1273-1284.e8, 2022 08 04.
Article En | MEDLINE | ID: mdl-35858618

Hematopoietic stem cells (HSCs) mediate regeneration of the hematopoietic system following injury, such as following infection or inflammation. These challenges impair HSC function, but whether this functional impairment extends beyond the duration of inflammatory exposure is unknown. Unexpectedly, we observed an irreversible depletion of functional HSCs following challenge with inflammation or bacterial infection, with no evidence of any recovery up to 1 year afterward. HSCs from challenged mice demonstrated multiple cellular and molecular features of accelerated aging and developed clinically relevant blood and bone marrow phenotypes not normally observed in aged laboratory mice but commonly seen in elderly humans. In vivo HSC self-renewal divisions were absent or extremely rare during both challenge and recovery periods. The progressive, irreversible attrition of HSC function demonstrates that temporally discrete inflammatory events elicit a cumulative inhibitory effect on HSCs. This work positions early/mid-life inflammation as a mediator of lifelong defects in tissue maintenance and regeneration.


Hematopoiesis , Hematopoietic Stem Cells , Aged , Aging , Animals , Bone Marrow , Humans , Inflammation , Mice
6.
Cell Stem Cell ; 29(5): 760-775.e10, 2022 05 05.
Article En | MEDLINE | ID: mdl-35523139

Hematopoietic stem and progenitor cells (HSPCs) are responsible for the production of blood and immune cells. Throughout life, HSPCs acquire oncogenic aberrations that can cause hematological cancers. Although molecular programs maintaining stem cell integrity have been identified, safety mechanisms eliminating malignant HSPCs from the stem cell pool remain poorly characterized. Here, we show that HSPCs constitutively present antigens via major histocompatibility complex class II. The presentation of immunogenic antigens, as occurring during malignant transformation, triggers bidirectional interactions between HSPCs and antigen-specific CD4+ T cells, causing stem cell proliferation, differentiation, and specific exhaustion of aberrant HSPCs. This immunosurveillance mechanism effectively eliminates transformed HSPCs from the hematopoietic system, thereby preventing leukemia onset. Together, our data reveal a bidirectional interaction between HSPCs and CD4+ T cells, demonstrating that HSPCs are not only passive receivers of immunological signals but also actively engage in adaptive immune responses to safeguard the integrity of the stem cell pool.


Antigen Presentation , Hematopoietic Stem Cells , Cell Differentiation , T-Lymphocytes
7.
Blood Adv ; 6(11): 3513-3528, 2022 06 14.
Article En | MEDLINE | ID: mdl-35413096

Infections are a key source of stress to the hematopoietic system. While infections consume short-lived innate immune cells, their recovery depends on quiescent hematopoietic stem cells (HSCs) with long-term self-renewal capacity. Both chronic inflammatory stress and bacterial infections compromise competitive HSC capacity and cause bone marrow (BM) failure. However, our understanding of how HSCs act during acute and contained infections remains incomplete. Here, we used advanced chimeric and genetic mouse models in combination with pharmacological interventions to dissect the complex nature of the acute systemic response of HSCs to lipopolysaccharide (LPS), a well-established model for inducing inflammatory stress. Acute LPS challenge transiently induced proliferation of quiescent HSCs in vivo. This response was not only mediated via direct LPS-TLR4 conjugation on HSCs but also involved indirect TLR4 signaling in CD115+ monocytic cells, inducing a complex proinflammatory cytokine cascade in BM. Downstream of LPS-TLR4 signaling, the combined action of proinflammatory cytokines such as interferon (IFN)α, IFNγ, tumor necrosis factor-α, interleukin (IL)-1α, IL-1ß, and many others is required to mediate full HSC activation in vivo. Together, our study reveals detailed mechanistic insights into the interplay of proinflammatory cytokine-induced molecular pathways and cell types that jointly orchestrate the complex process of emergency hematopoiesis and HSC activation upon LPS exposure in vivo.


Lipopolysaccharides , Toll-Like Receptor 4 , Animals , Cytokines/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Lipopolysaccharides/pharmacology , Mice , Toll-Like Receptor 4/metabolism
8.
Blood Adv ; 6(6): 1780-1796, 2022 03 22.
Article En | MEDLINE | ID: mdl-35016204

How genetic haploinsufficiency contributes to the clonal dominance of hematopoietic stem cells (HSCs) in del(5q) myelodysplastic syndrome (MDS) remains unresolved. Using a genetic barcoding strategy, we performed a systematic comparison on genes implicated in the pathogenesis of del(5q) MDS in direct competition with each other and wild-type (WT) cells with single-clone resolution. Csnk1a1 haploinsufficient HSCs expanded (oligo)clonally and outcompeted all other tested genes and combinations. Csnk1a1-/+ multipotent progenitors showed a proproliferative gene signature and HSCs showed a downregulation of inflammatory signaling/immune response. In validation experiments, Csnk1a1-/+ HSCs outperformed their WT counterparts under a chronic inflammation stimulus, also known to be caused by neighboring genes on chromosome 5. We therefore propose a crucial role for Csnk1a1 haploinsufficiency in the selective advantage of 5q-HSCs, implemented by creation of a unique competitive advantage through increased HSC self-renewal and proliferation capacity, as well as increased fitness under inflammatory stress.


Chromosome Deletion , Myelodysplastic Syndromes , Haploinsufficiency , Hematopoietic Stem Cells/pathology , Humans , Myelodysplastic Syndromes/pathology
9.
Front Cell Dev Biol ; 9: 705410, 2021.
Article En | MEDLINE | ID: mdl-34368155

The bone marrow (BM) microenvironment, also called the BM niche, is essential for the maintenance of fully functional blood cell formation (hematopoiesis) throughout life. Under physiologic conditions the niche protects hematopoietic stem cells (HSCs) from sustained or overstimulation. Acute or chronic stress deregulates hematopoiesis and some of these alterations occur indirectly via the niche. Effects on niche cells include skewing of its cellular composition, specific localization and molecular signals that differentially regulate the function of HSCs and their progeny. Importantly, while acute insults display only transient effects, repeated or chronic insults lead to sustained alterations of the niche, resulting in HSC deregulation. We here describe how changes in BM niche composition (ecosystem) and structure (remodeling) modulate activation of HSCs in situ. Current knowledge has revealed that upon chronic stimulation, BM remodeling is more extensive and otherwise quiescent HSCs may be lost due to diminished cellular maintenance processes, such as autophagy, ER stress response, and DNA repair. Features of aging in the BM ecology may be the consequence of intermittent stress responses, ultimately resulting in the degeneration of the supportive stem cell microenvironment. Both chronic stress and aging impair the functionality of HSCs and increase the overall susceptibility to development of diseases, including malignant transformation. To understand functional degeneration, an important prerequisite is to define distinguishing features of unperturbed niche homeostasis in different settings. A unique setting in this respect is xenotransplantation, in which human cells depend on niche factors produced by other species, some of which we will review. These insights should help to assess deviations from the steady state to actively protect and improve recovery of the niche ecosystem in situ to optimally sustain healthy hematopoiesis in experimental and clinical settings.

10.
Exp Hematol ; 96: 1-12, 2021 04.
Article En | MEDLINE | ID: mdl-33571568

Interferons are an ancient and well-conserved group of inflammatory cytokines most famous for their role in viral immunity. A decade ago, we discovered that interferons also play an important role in the biology of hematopoietic stem cells (HSCs), which are responsible for lifelong blood production. Though we have learned a great deal about the role of interferons on HSC quiescence, differentiation, and self-renewal, there remains some controversy regarding how interferons impact these stem cells, with differing conclusions depending on experimental models and clinical context. Here, we review the contradictory roles of Type 1 and 2 interferons in hematopoiesis. Specifically, we highlight the roles of interferons in embryonic and adult hematopoiesis, along with short-term and long-term adaptive and maladaptive responses to inflammation. We discuss experimental challenges in the study of these powerful yet short-lived cytokines and strategies to address those challenges. We further review the contribution by interferons to disease states including bone marrow failure and aplastic anemia as well as their therapeutic use to treat myeloproliferative neoplasms and viral infections, including SARS-CoV2. Understanding the opposing effects of interferons on hematopoiesis will elucidate immune responses and bone marrow failure syndromes, and future therapeutic approaches for patients undergoing HSC transplantation or fighting infectious diseases and cancer.


Hematopoiesis/drug effects , Hematopoietic Stem Cells/drug effects , Immunologic Factors/therapeutic use , Interferons/therapeutic use , Animals , Antineoplastic Agents/immunology , Antineoplastic Agents/therapeutic use , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/immunology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Humans , Immunologic Factors/immunology , Interferons/immunology
11.
Cell Stem Cell ; 26(5): 611-612, 2020 05 07.
Article En | MEDLINE | ID: mdl-32386549

Immune memory was thought to be unique to cells of the adaptive immune system. In this issue of Cell Stem Cell, de Laval et al. (2020) describe persistent epigenetic modifications in hematopoietic stem cells following an inflammatory insult with LPS as a mechanism by which immune memory may be established.


CCAAT-Enhancer-Binding Protein-beta , Hematopoietic Stem Cells , Epigenesis, Genetic , Humans , Immune System , Inflammation/genetics
12.
Nat Commun ; 11(1): 1494, 2020 03 20.
Article En | MEDLINE | ID: mdl-32198421

Metastatic colonization relies on interactions between disseminated cancer cells and the microenvironment in secondary organs. Here, we show that disseminated breast cancer cells evoke phenotypic changes in lung fibroblasts, forming a supportive metastatic niche. Colonization of the lungs confers an inflammatory phenotype in metastasis-associated fibroblasts. Specifically, IL-1α and IL-1ß secreted by breast cancer cells induce CXCL9 and CXCL10 production in lung fibroblasts via NF-κB signaling, fueling the growth of lung metastases. Notably, we find that the chemokine receptor CXCR3, that binds CXCL9/10, is specifically expressed in a small subset of breast cancer cells, which exhibits tumor-initiating ability when co-transplanted with fibroblasts and has high JNK signaling that drives IL-1α/ß expression. Importantly, disruption of the intercellular JNK-IL-1-CXCL9/10-CXCR3 axis reduces metastatic colonization in xenograft and syngeneic mouse models. These data mechanistically demonstrate an essential role for the molecular crosstalk between breast cancer cells and their fibroblast niche in the progression of metastasis.


Breast Neoplasms/metabolism , Fibroblasts/metabolism , Lung Neoplasms/metabolism , Lung/metabolism , Neoplasm Metastasis , Tumor Microenvironment/physiology , Animals , Breast/metabolism , Breast/pathology , Breast Neoplasms/pathology , Cell Line, Tumor , Chemokine CXCL10/metabolism , Chemokine CXCL9/metabolism , Female , Fibroblasts/pathology , Gene Knockdown Techniques , Humans , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Lung/pathology , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Receptors, CXCR3/metabolism , Signal Transduction , Transcriptome , Transplantation, Heterologous
14.
Nat Genet ; 49(7): 1052-1060, 2017 Jul.
Article En | MEDLINE | ID: mdl-28604729

Several mechanisms of action have been proposed for DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi), primarily based on candidate-gene approaches. However, less is known about their genome-wide transcriptional and epigenomic consequences. By mapping global transcription start site (TSS) and chromatin dynamics, we observed the cryptic transcription of thousands of treatment-induced non-annotated TSSs (TINATs) following DNMTi and HDACi treatment. The resulting transcripts frequently splice into protein-coding exons and encode truncated or chimeric ORFs translated into products with predicted abnormal or immunogenic functions. TINAT transcription after DNMTi treatment coincided with DNA hypomethylation and gain of classical promoter histone marks, while HDACi specifically induced a subset of TINATs in association with H2AK9ac, H3K14ac, and H3K23ac. Despite this mechanistic difference, both inhibitors convergently induced transcription from identical sites, as we found TINATs to be encoded in solitary long terminal repeats of the ERV9/LTR12 family, which are epigenetically repressed in virtually all normal cells.


DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , Death-Associated Protein Kinases/genetics , Histone Code , Histone Deacetylase Inhibitors/pharmacology , Terminal Repeat Sequences/genetics , Transcription Initiation Site/drug effects , Alternative Splicing/genetics , Animals , Benzimidazoles/pharmacology , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/physiology , DNA Methylation , Death-Associated Protein Kinases/antagonists & inhibitors , Epigenetic Repression , Exons/genetics , Female , Gene Expression Profiling , Gene Silencing , Humans , Hydroxamic Acids/pharmacology , Introns/genetics , Mice , Mice, Nude , RNA Interference , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Vorinostat
15.
Cell Rep ; 19(11): 2345-2356, 2017 06 13.
Article En | MEDLINE | ID: mdl-28614719

Quiescent long-term hematopoietic stem cells (LT-HSCs) are efficiently activated by type I interferon (IFN-I). However, this effect remains poorly investigated in the context of IFN-I-inducing virus infections. Here we report that both vesicular stomatitis virus (VSV) and murine cytomegalovirus (MCMV) infection induce LT-HSC activation that substantially differs from the effects triggered upon injection of synthetic IFN-I-inducing agents. In both infections, inflammatory responses had to exceed local thresholds within the bone marrow to confer LT-HSC cell cycle entry, and IFN-I receptor triggering was not critical for this activation. After resolution of acute MCMV infection, LT-HSCs returned to phenotypic quiescence. However, non-acute MCMV infection induced a sustained inflammatory milieu within the bone marrow that was associated with long-lasting impairment of LT-HSC function. In conclusion, our results show that systemic virus infections fundamentally affect LT-HSCs and that also non-acute inflammatory stimuli in bone marrow donors can affect the reconstitution potential of bone marrow transplants.


Hematopoietic Stem Cells/metabolism , Infections/virology , Animals , Cell Cycle , Cell Proliferation , Hematopoietic Stem Cells/cytology , Mice , Signal Transduction
16.
Haematologica ; 102(9): 1567-1577, 2017 09.
Article En | MEDLINE | ID: mdl-28550184

In patients with acute myeloid leukemia and low percentages of aldehyde-dehydrogenase-positive cells, non-leukemic hematopoietic stem cells can be separated from leukemic cells. By relating hematopoietic stem cell frequencies to outcome we detected poor overall- and disease-free survival of patients with low hematopoietic stem cell frequencies. Serial analysis of matched diagnostic and follow-up samples further demonstrated that hematopoietic stem cells increased after chemotherapy in patients who achieved durable remissions. However, in patients who eventually relapsed, hematopoietic stem cell numbers decreased dramatically at the time of molecular relapse demonstrating that hematopoietic stem cell levels represent an indirect marker of minimal residual disease, which heralds leukemic relapse. Upon transplantation in immune-deficient mice cases with low percentages of hematopoietic stem cells of our cohort gave rise to leukemic or no engraftment, whereas cases with normal hematopoietic stem cell levels mostly resulted in multi-lineage engraftment. Based on our experimental data, we propose that leukemic stem cells have increased niche affinity in cases with low percentages of hematopoietic stem cells. To validate this hypothesis, we developed new mathematical models describing the dynamics of healthy and leukemic cells under different regulatory scenarios. These models suggest that the mechanism leading to decreases in hematopoietic stem cell frequencies before leukemic relapse must be based on expansion of leukemic stem cells with high niche affinity and the ability to dislodge hematopoietic stem cells. Thus, our data suggest that decreasing numbers of hematopoietic stem cells indicate leukemic stem cell persistence and the emergence of leukemic relapse.


Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Animals , Cell Count , Disease-Free Survival , Female , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Heterografts , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/therapy , Male , Mice , Survival Rate
17.
Nat Cell Biol ; 19(4): 271-281, 2017 04.
Article En | MEDLINE | ID: mdl-28319093

Blood formation is believed to occur through stepwise progression of haematopoietic stem cells (HSCs) following a tree-like hierarchy of oligo-, bi- and unipotent progenitors. However, this model is based on the analysis of predefined flow-sorted cell populations. Here we integrated flow cytometric, transcriptomic and functional data at single-cell resolution to quantitatively map early differentiation of human HSCs towards lineage commitment. During homeostasis, individual HSCs gradually acquire lineage biases along multiple directions without passing through discrete hierarchically organized progenitor populations. Instead, unilineage-restricted cells emerge directly from a 'continuum of low-primed undifferentiated haematopoietic stem and progenitor cells' (CLOUD-HSPCs). Distinct gene expression modules operate in a combinatorial manner to control stemness, early lineage priming and the subsequent progression into all major branches of haematopoiesis. These data reveal a continuous landscape of human steady-state haematopoiesis downstream of HSCs and provide a basis for the understanding of haematopoietic malignancies.


Cell Lineage , Hematopoietic Stem Cells/cytology , Adult , Animals , Antigens, CD/metabolism , Cell Lineage/genetics , Cell Proliferation/genetics , Female , Gene Regulatory Networks , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Models, Biological , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Transcriptome/genetics
18.
J Exp Med ; 214(1): 165-181, 2017 01.
Article En | MEDLINE | ID: mdl-27998927

Here, we show that the Wnt5a-haploinsufficient niche regenerates dysfunctional HSCs, which do not successfully engraft in secondary recipients. RNA sequencing of the regenerated donor Lin- SCA-1+ KIT+ (LSK) cells shows dysregulated expression of ZEB1-associated genes involved in the small GTPase-dependent actin polymerization pathway. Misexpression of DOCK2, WAVE2, and activation of CDC42 results in apolar F-actin localization, leading to defects in adhesion, migration and homing of HSCs regenerated in a Wnt5a-haploinsufficient microenvironment. Moreover, these cells show increased differentiation in vitro, with rapid loss of HSC-enriched LSK cells. Our study further shows that the Wnt5a-haploinsufficient environment similarly affects BCR-ABLp185 leukemia-initiating cells, which fail to generate leukemia in 42% of the studied recipients, or to transfer leukemia to secondary hosts. Thus, we show that WNT5A in the bone marrow niche is required to regenerate HSCs and leukemic cells with functional ability to rearrange the actin cytoskeleton and engraft successfully.


Actin Cytoskeleton/physiology , Hematopoietic Stem Cells/physiology , Wnt-5a Protein/physiology , Animals , Fusion Proteins, bcr-abl/physiology , Haploinsufficiency/physiology , Leukemia/etiology , Mice , Mice, Inbred C57BL , Regeneration , Wnt-5a Protein/genetics
19.
Haematologica ; 102(3): 445-453, 2017 03.
Article En | MEDLINE | ID: mdl-27742772

In the bone marrow, endothelial cells are a major component of the hematopoietic stem cell vascular niche and are a first line of defense against inflammatory stress and infection. The primary response of an organism to infection involves the synthesis of immune-modulatory cytokines, including interferon alpha. In the bone marrow, interferon alpha induces rapid cell cycle entry of hematopoietic stem cells in vivo However, the effect of interferon alpha on bone marrow endothelial cells has not been described. Here, we demonstrate that acute interferon alpha treatment leads to rapid stimulation of bone marrow endothelial cells in vivo, resulting in increased bone marrow vascularity and vascular leakage. We find that activation of bone marrow endothelial cells involves the expression of key inflammatory and endothelial cell-stimulatory markers. This interferon alpha-mediated activation of bone marrow endothelial cells is dependent in part on vascular endothelial growth factor signaling in bone marrow hematopoietic cell types, including hematopoietic stem cells. Thus, this implies a role for hematopoietic stem cells in remodeling of the bone marrow niche in vivo following inflammatory stress. These data increase our current understanding of the relationship between hematopoietic stem cells and the bone marrow niche under inflammatory stress and also clarify the response of bone marrow niche endothelial cells to acute interferon alpha treatment in vivo.


Bone Marrow/metabolism , Endothelial Cells/metabolism , Hematopoietic Stem Cells/metabolism , Interferon-alpha/metabolism , Stem Cell Niche , Animals , Biomarkers , Bone Marrow/blood supply , Bone Marrow Cells/metabolism , Capillary Permeability , Cell Proliferation , Cellular Microenvironment , Female , Hematopoiesis , Hematopoietic Stem Cells/cytology , Immunophenotyping , Interferon-alpha/genetics , Interferon-alpha/pharmacology , Mice , Mice, Knockout , Models, Biological , Neovascularization, Physiologic , Phenotype , Poly I-C/pharmacology , Signal Transduction/drug effects , Stress, Physiological , Vascular Endothelial Growth Factor A/biosynthesis
20.
J Exp Med ; 213(10): 1961-71, 2016 09 19.
Article En | MEDLINE | ID: mdl-27573814

During homeostasis, hematopoietic stem cells (HSCs) are mostly kept in quiescence with only minor contribution to steady-state hematopoiesis. However, in stress situations such as infection, chemotherapy, or transplantation, HSCs are forced to proliferate and rapidly regenerate compromised hematopoietic cells. Little is known about the processes regulating this stress-induced proliferation and expansion of HSCs and progenitors. In this study, we identified the extracellular matrix (ECM) adaptor protein Matrilin-4 (Matn4) as an important negative regulator of the HSC stress response. Matn4 is highly expressed in long-term HSCs; however, it is not required for HSC maintenance under homeostasis. In contrast, Matn4 is strongly down-regulated in HSCs in response to proliferative stress, and Matn4 deficiency results in increased proliferation and expansion of HSCs and progenitors after myelosuppressive chemotherapy, inflammatory stress, and transplantation. This enhanced proliferation is mediated by a transient down-regulation of CXCR4 in Matn4(-/-) HSCs upon stress, allowing for a more efficient expansion of HSCs. Thus, we have uncovered a novel link between the ECM protein Matn4 and cytokine receptor CXCR4 involved in the regulation of HSC proliferation and expansion under acute stress.


Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Receptors, CXCR4/metabolism , Stress, Physiological , Animals , Bone Marrow Transplantation , Cell Proliferation , Down-Regulation , Female , Hematopoiesis , Matrilin Proteins/metabolism , Mice, Inbred C57BL
...