Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 10(1): 1756, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988403

ABSTRACT

Sub-picosecond magnetisation manipulation via femtosecond optical pumping has attracted wide attention ever since its original discovery in 1996. However, the spatial evolution of the magnetisation is not yet well understood, in part due to the difficulty in experimentally probing such rapid dynamics. Here, we find evidence of a universal rapid magnetic order recovery in ferrimagnets with perpendicular magnetic anisotropy via nonlinear magnon processes. We identify magnon localisation and coalescence processes, whereby localised magnetic textures nucleate and subsequently interact and grow in accordance with a power law formalism. A hydrodynamic representation of the numerical simulations indicates that the appearance of noncollinear magnetisation via optical pumping establishes exchange-mediated spin currents with an equivalent 100% spin polarised charge current density of 107 A cm-2. Such large spin currents precipitate rapid recovery of magnetic order after optical pumping. The magnon processes discussed here provide new insights for the stabilization of desired meta-stable states.

2.
J Phys Condens Matter ; 31(9): 095802, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30540976

ABSTRACT

We present an adaptive algorithm for the optimal phase space sampling in Monte Carlo simulations of 3D Heisenberg spin systems. Based on a golden rule of the Metropolis algorithm which states that an acceptance rate of [Formula: see text] is ideal to efficiently sample the phase space, the algorithm adaptively modifies a cone-based spin update method keeping the acceptance rate close to [Formula: see text]. We have assessed the efficiency of the adaptive algorithm through four different tests and contrasted its performance with that of other common spin update methods. In systems at low and high temperatures and anisotropies, the adaptive algorithm proved to be the most efficient for magnetization reversal and for the convergence to equilibrium of the thermal averages and the coercivity in hysteresis calculations. Thus, the adaptive algorithm can be used to significantly reduce the computational cost in Monte Carlo simulations of 3D Heisenberg spin systems.

3.
Sci Rep ; 5: 9183, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25777540

ABSTRACT

In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ΔmAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ΔmAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ΔmAFM. In the athermal training effect, the state of the ΔmAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ΔmAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices.

4.
J Phys Condens Matter ; 26(10): 103202, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24552692

ABSTRACT

Atomistic modelling of magnetic materials provides unprecedented detail about the underlying physical processes that govern their macroscopic properties, and allows the simulation of complex effects such as surface anisotropy, ultrafast laser-induced spin dynamics, exchange bias, and microstructural effects. Here we present the key methods used in atomistic spin models which are then applied to a range of magnetic problems. We detail the parallelization strategies used which enable the routine simulation of extended systems with full atomistic resolution.


Subject(s)
Electromagnetic Fields , Models, Chemical , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Quantum Theory , Spin Labels , Computer Simulation , Models, Statistical
5.
J Phys Condens Matter ; 25(29): 296006, 2013 Jul 24.
Article in English | MEDLINE | ID: mdl-23817945

ABSTRACT

In terms of the fully relativistic screened Korringa-Kohn-Rostoker method we investigate the effect of stacking faults on the magnetic properties of hexagonal close-packed (hcp) cobalt. In particular, we consider the formation energy and the effect on the magnetocrystalline anisotropy energy (MAE) of four different stacking faults in hcp cobalt-an intrinsic growth fault, an intrinsic deformation fault, an extrinsic fault and a twin-like fault. We find that the intrinsic growth fault has the lowest formation energy, in good agreement with previous first-principles calculations. With the exception of the intrinsic deformation fault which has a positive impact on the MAE, we find that the presence of a stacking fault generally reduces the MAE of bulk Co. Finally, we consider a pair of intrinsic growth faults and find that their effect on the MAE is not additive, but synergic.


Subject(s)
Anisotropy , Cobalt/chemistry , Computer Simulation , Magnetic Phenomena , Crystallization , Models, Chemical , Surface Properties
6.
Nat Commun ; 3: 666, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22314362

ABSTRACT

The question of how, and how fast, magnetization can be reversed is a topic of great practical interest for the manipulation and storage of magnetic information. It is generally accepted that magnetization reversal should be driven by a stimulus represented by time-non-invariant vectors such as a magnetic field, spin-polarized electric current, or cross-product of two oscillating electric fields. However, until now it has been generally assumed that heating alone, not represented as a vector at all, cannot result in a deterministic reversal of magnetization, although it may assist this process. Here we show numerically and demonstrate experimentally a novel mechanism of deterministic magnetization reversal in a ferrimagnet driven by an ultrafast heating of the medium resulting from the absorption of a sub-picosecond laser pulse without the presence of a magnetic field.

7.
Nature ; 472(7342): 205-8, 2011 Apr 14.
Article in English | MEDLINE | ID: mdl-21451521

ABSTRACT

Ferromagnetic or antiferromagnetic spin ordering is governed by the exchange interaction, the strongest force in magnetism. Understanding spin dynamics in magnetic materials is an issue of crucial importance for progress in information processing and recording technology. Usually the dynamics are studied by observing the collective response of exchange-coupled spins, that is, spin resonances, after an external perturbation by a pulse of magnetic field, current or light. The periods of the corresponding resonances range from one nanosecond for ferromagnets down to one picosecond for antiferromagnets. However, virtually nothing is known about the behaviour of spins in a magnetic material after being excited on a timescale faster than that corresponding to the exchange interaction (10-100 fs), that is, in a non-adiabatic way. Here we use the element-specific technique X-ray magnetic circular dichroism to study spin reversal in GdFeCo that is optically excited on a timescale pertinent to the characteristic time of the exchange interaction between Gd and Fe spins. We unexpectedly find that the ultrafast spin reversal in this material, where spins are coupled antiferromagnetically, occurs by way of a transient ferromagnetic-like state. Following the optical excitation, the net magnetizations of the Gd and Fe sublattices rapidly collapse, switch their direction and rebuild their net magnetic moments at substantially different timescales; the net magnetic moment of the Gd sublattice is found to reverse within 1.5 picoseconds, which is substantially slower than the Fe reversal time of 300 femtoseconds. Consequently, a transient state characterized by a temporary parallel alignment of the net Gd and Fe moments emerges, despite their ground-state antiferromagnetic coupling. These surprising observations, supported by atomistic simulations, provide a concept for the possibility of manipulating magnetic order on the timescale of the exchange interaction.

SELECTION OF CITATIONS
SEARCH DETAIL