Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
bioRxiv ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38979201

ABSTRACT

Adoptive chimeric antigen receptor T-cell (CAR-T) therapy is transformative and approved for hematologic malignancies. It is also being developed for the treatment of solid tumors, autoimmune disorders, heart disease, and aging. Despite unprecedented clinical outcomes, CAR-T and other engineered cell therapies face a variety of manufacturing and safety challenges. Traditional methods, such as lentivirus transduction and electroporation, result in random integration or cause significant cellular damage, which can limit the safety and efficacy of engineered cell therapies. We present hydroporation as a gentle and effective alternative for intracellular delivery. Hydroporation resulted in 1.7- to 2-fold higher CAR-T yields compared to electroporation with superior cell viability and recovery. Hydroporated cells exhibited rapid proliferation, robust target cell lysis, and increased pro-inflammatory and regulatory cytokine secretion in addition to improved CAR-T yield by day 5 post-transfection. We demonstrate that scaled-up hydroporation can process 5 x 108 cells in less than 10 s, showcasing the platform as a viable solution for high-yield CAR-T manufacturing with the potential for improved therapeutic outcomes.

2.
bioRxiv ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39026749

ABSTRACT

NK cells express activating receptors that signal through ITAM-bearing adapter proteins. The phosphorylation of each ITAM creates binding sites for SYK and ZAP70 protein tyrosine kinases to propagate downstream signaling including the induction of Ca 2 + influx. While all immature and mature human NK cells co-express SYK and ZAP70, clonally driven memory or adaptive NK cells can methylate SYK genes and signaling is mediated exclusively using ZAP70. Here, we examined the role of SYK and ZAP70 in a clonal human NK cell line KHYG1 by CRISPR-based deletion using a combination of experiments and mechanistic computational modeling. Elimination of SYK resulted in more robust Ca + + influx after cross-linking of the CD16 and NKp30 receptors and enhanced phosphorylation of downstream proteins, whereas ZAP70 deletion diminished these responses. By contrast, ZAP70 depletion increased proliferation of the NK cells. As immature T cells express both SYK and ZAP70 but mature T cells often express only ZAP70, we transduced the human Jurkat cell line with SYK and found that expression of SYK increased proliferation but diminished TCR-induced Ca 2 + flux and activation. We performed transcriptional analysis of the matched sets of variant Jurkat and KHYG1 cells and observed profound alterations caused by SYK expression. As depletion of SYK in NK cells increased their activation, primary human NK cells were transduced with a CD19-targeting CAR and were CRISPR edited to ablate SYK or ZAP70. Deletion of SYK resulted in more robust cytotoxic activity and cytokine production, providing a new therapeutic strategy of NK cell engineering for cancer immunotherapy.

3.
bioRxiv ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39071432

ABSTRACT

Discovering the role of fibroblasts residing in the tumor microenvironment (TME) requires controlled, localized perturbations because fibroblasts play critical roles in regulating immunity and tumor biology at multiple sites. Systemic perturbations can lead to unintended, confounding secondary effects, and methods to locally genetically engineer fibroblasts are lacking. To specifically investigate murine stromal cell perturbations restricted to the TME, we developed an adeno-associated virus (AAV)-based method to target any gene-of-interest in fibroblasts at high efficiency (>80%). As proof of concept, we generated single (sKO) and double gene KOs (dKO) of Osmr , Tgfbr2 , and Il1r1 in cancer-associated fibroblasts (CAFs) and investigated how their cell states and those of other cells of the TME subsequently change in mouse models of melanoma and pancreatic ductal adenocarcinoma (PDAC). Furthermore, we developed an in vivo knockin-knockout (KIKO) strategy to achieve long-term tracking of CAFs with target gene KO via knocked-in reporter gene expression. This validated in vivo gene editing toolbox is fast, affordable, and modular, and thus holds great potential for further exploration of gene function in stromal cells residing in tumors and beyond.

4.
bioRxiv ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39071446

ABSTRACT

Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) is a new approach for ex vivo genome editing of primary human cells. PERC uses a single amphiphilic peptide reagent to mediate intracellular delivery of the same pre-formed CRISPR ribonucleoprotein enzymes that are broadly used in research and therapeutics, resulting in high-efficiency editing of stimulated immune cells and cultured hematopoietic stem and progenitor cells (HSPCs). PERC facilitates nuclease-mediated gene knockout, precise transgene knock-in, and base editing. PERC involves mixing the CRISPR ribonucleoprotein enzyme with peptide and then incubating the formulation with cultured cells. For efficient transgene knock-in, adeno-associated virus (AAV) bearing homology-directed repair template DNA may be included. In contrast to electroporation, PERC is appealing as it requires no dedicated hardware and has less impact on cell phenotype and viability. Due to the gentle nature of PERC, delivery can be performed multiple times without substantial impact to cell health or phenotype. Here we report methods for improved PERC-mediated editing of T cells as well as novel methods for PERC-mediated editing of HSPCs, including knockout and precise knock-in. Editing efficiencies can surpass 90% using either Cas9 or Cas12a in primary T cells or HSPCs. Because PERC calls for only three readily available reagents - protein, RNA, and peptide - and does not require dedicated hardware for any step, PERC demands no special expertise and is exceptionally straightforward to adopt. The inherent compatibility of PERC with established cell engineering pipelines makes this approach appealing for rapid deployment in research and clinical settings.

6.
bioRxiv ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38370809

ABSTRACT

Multiplexed reprogramming of T cell specificity and function can generate powerful next-generation cellular therapies. However, current manufacturing methods produce heterogenous mixtures of partially engineered cells. Here, we develop a one-step process to enrich for unlabeled cells with knock-ins at multiple target loci using a family of repair templates named Synthetic Exon/Expression Disruptors (SEEDs). SEED engineering associates transgene integration with the disruption of a paired endogenous surface protein, allowing non-modified and partially edited cells to be immunomagnetically depleted (SEED-Selection). We design SEEDs to fully reprogram three critical loci encoding T cell specificity, co-receptor expression, and MHC expression, with up to 98% purity after selection for individual modifications and up to 90% purity for six simultaneous edits (three knock-ins and three knockouts). These methods are simple, compatible with existing clinical manufacturing workflows, and can be readily adapted to other loci to facilitate production of complex gene-edited cell therapies.

7.
Nature ; 625(7996): 805-812, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38093011

ABSTRACT

CRISPR-enabled screening is a powerful tool for the discovery of genes that control T cell function and has nominated candidate targets for immunotherapies1-6. However, new approaches are required to probe specific nucleotide sequences within key genes. Systematic mutagenesis in primary human T cells could reveal alleles that tune specific phenotypes. DNA base editors are powerful tools for introducing targeted mutations with high efficiency7,8. Here we develop a large-scale base-editing mutagenesis platform with the goal of pinpointing nucleotides that encode amino acid residues that tune primary human T cell activation responses. We generated a library of around 117,000 single guide RNA molecules targeting base editors to protein-coding sites across 385 genes implicated in T cell function and systematically identified protein domains and specific amino acid residues that regulate T cell activation and cytokine production. We found a broad spectrum of alleles with variants encoding critical residues in proteins including PIK3CD, VAV1, LCP2, PLCG1 and DGKZ, including both gain-of-function and loss-of-function mutations. We validated the functional effects of many alleles and further demonstrated that base-editing hits could positively and negatively tune T cell cytotoxic function. Finally, higher-resolution screening using a base editor with relaxed protospacer-adjacent motif requirements9 (NG versus NGG) revealed specific structural domains and protein-protein interaction sites that can be targeted to tune T cell functions. Base-editing screens in primary immune cells thus provide biochemical insights with the potential to accelerate immunotherapy design.


Subject(s)
Alleles , Gene Editing , Mutagenesis , T-Lymphocytes , Humans , Amino Acids/genetics , CRISPR-Cas Systems/genetics , Mutagenesis/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation , Cytokines/biosynthesis , Cytokines/metabolism , Gain of Function Mutation , Loss of Function Mutation
8.
Cell ; 186(21): 4567-4582.e20, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37794590

ABSTRACT

CRISPR-Cas9 genome editing has enabled advanced T cell therapies, but occasional loss of the targeted chromosome remains a safety concern. To investigate whether Cas9-induced chromosome loss is a universal phenomenon and evaluate its clinical significance, we conducted a systematic analysis in primary human T cells. Arrayed and pooled CRISPR screens revealed that chromosome loss was generalizable across the genome and resulted in partial and entire loss of the targeted chromosome, including in preclinical chimeric antigen receptor T cells. T cells with chromosome loss persisted for weeks in culture, implying the potential to interfere with clinical use. A modified cell manufacturing process, employed in our first-in-human clinical trial of Cas9-engineered T cells (NCT03399448), reduced chromosome loss while largely preserving genome editing efficacy. Expression of p53 correlated with protection from chromosome loss observed in this protocol, suggesting both a mechanism and strategy for T cell engineering that mitigates this genotoxicity in the clinic.


Subject(s)
CRISPR-Cas Systems , Chromosome Aberrations , Gene Editing , T-Lymphocytes , Humans , Chromosomes , CRISPR-Cas Systems/genetics , DNA Damage , Gene Editing/methods , Clinical Trials as Topic
9.
Nat Cancer ; 4(11): 1592-1609, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37904046

ABSTRACT

Safely expanding indications for cellular therapies has been challenging given a lack of highly cancer-specific surface markers. Here we explore the hypothesis that tumor cells express cancer-specific surface protein conformations that are invisible to standard target discovery pipelines evaluating gene or protein expression, and these conformations can be identified and immunotherapeutically targeted. We term this strategy integrating cross-linking mass spectrometry with glycoprotein surface capture 'structural surfaceomics'. As a proof of principle, we apply this technology to acute myeloid leukemia (AML), a hematologic malignancy with dismal outcomes and no known optimal immunotherapy target. We identify the activated conformation of integrin ß2 as a structurally defined, widely expressed AML-specific target. We develop and characterize recombinant antibodies to this protein conformation and show that chimeric antigen receptor T cells eliminate AML cells and patient-derived xenografts without notable toxicity toward normal hematopoietic cells. Our findings validate an AML conformation-specific target antigen and demonstrate a tool kit for applying these strategies more broadly.


Subject(s)
Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes , Integrins/metabolism , Immunotherapy, Adoptive/methods , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/genetics
10.
Cell ; 186(19): 4216-4234.e33, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37714135

ABSTRACT

Chronic stimulation can cause T cell dysfunction and limit the efficacy of cellular immunotherapies. Improved methods are required to compare large numbers of synthetic knockin (KI) sequences to reprogram cell functions. Here, we developed modular pooled KI screening (ModPoKI), an adaptable platform for modular construction of DNA KI libraries using barcoded multicistronic adaptors. We built two ModPoKI libraries of 100 transcription factors (TFs) and 129 natural and synthetic surface receptors (SRs). Over 30 ModPoKI screens across human TCR- and CAR-T cells in diverse conditions identified a transcription factor AP4 (TFAP4) construct that enhanced fitness of chronically stimulated CAR-T cells and anti-cancer function in vitro and in vivo. ModPoKI's modularity allowed us to generate an ∼10,000-member library of TF combinations. Non-viral KI of a combined BATF-TFAP4 polycistronic construct enhanced fitness. Overexpressed BATF and TFAP4 co-occupy and regulate key gene targets to reprogram T cell function. ModPoKI facilitates the discovery of complex gene constructs to program cellular functions.


Subject(s)
Cell- and Tissue-Based Therapy , Exercise , Humans , Gene Library , Immunotherapy , Research
11.
Nat Biomed Eng ; 7(5): 647-660, 2023 05.
Article in English | MEDLINE | ID: mdl-37147433

ABSTRACT

CRISPR-mediated genome editing of primary human lymphocytes is typically carried out via electroporation, which can be cytotoxic, cumbersome and costly. Here we show that the yields of edited primary human lymphocytes can be increased substantially by delivering a CRISPR ribonucleoprotein mixed with an amphiphilic peptide identified through screening. We evaluated the performance of this simple delivery method by knocking out genes in T cells, B cells and natural killer cells via the delivery of Cas9 or Cas12a ribonucleoproteins or an adenine base editor. We also show that peptide-mediated ribonucleoprotein delivery paired with an adeno-associated-virus-mediated homology-directed repair template can introduce a chimaeric antigen receptor gene at the T-cell receptor α constant locus, and that the engineered cells display antitumour potency in mice. The method is minimally perturbative, does not require dedicated hardware, and is compatible with multiplexed editing via sequential delivery, which minimizes the risk of genotoxicity. The peptide-mediated intracellular delivery of ribonucleoproteins may facilitate the manufacturing of engineered T cells.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Mice , Animals , Gene Editing/methods , T-Lymphocytes/metabolism , Peptides/genetics , Ribonucleoproteins
12.
bioRxiv ; 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36993359

ABSTRACT

CRISPR-Cas9 genome editing has enabled advanced T cell therapies, but occasional loss of the targeted chromosome remains a safety concern. To investigate whether Cas9-induced chromosome loss is a universal phenomenon and evaluate its clinical significance, we conducted a systematic analysis in primary human T cells. Arrayed and pooled CRISPR screens revealed that chromosome loss was generalizable across the genome and resulted in partial and entire loss of the chromosome, including in pre-clinical chimeric antigen receptor T cells. T cells with chromosome loss persisted for weeks in culture, implying the potential to interfere with clinical use. A modified cell manufacturing process, employed in our first-in-human clinical trial of Cas9-engineered T cells, 1 dramatically reduced chromosome loss while largely preserving genome editing efficacy. Expression of p53 correlated with protection from chromosome loss observed in this protocol, suggesting both a mechanism and strategy for T cell engineering that mitigates this genotoxicity in the clinic.

13.
Blood ; 141(22): 2698-2712, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36745870

ABSTRACT

Cell therapies that rely on engineered immune cells can be enhanced by achieving uniform and controlled transgene expression in order to maximize T-cell function and achieve predictable patient responses. Although they are effective, current genetic engineering strategies that use γ-retroviral, lentiviral, and transposon-based vectors to integrate transgenes, unavoidably produce variegated transgene expression in addition to posing a risk of insertional mutagenesis. In the setting of chimeric antigen receptor (CAR) therapy, inconsistent and random CAR expression may result in tonic signaling, T-cell exhaustion, and variable T-cell persistence. Here, we report and validate an algorithm for the identification of extragenic genomic safe harbors (GSH) that can be efficiently targeted for DNA integration and can support sustained and predictable CAR expression in human peripheral blood T cells. The algorithm is based on 7 criteria established to minimize genotoxicity by directing transgene integration away from functionally important genomic elements, maximize efficient CRISPR/Cas9-mediated targeting, and avert transgene silencing over time. T cells engineered to express a CD19 CAR at GSH6, which meets all 7 criteria, are curative at low cell dose in a mouse model of acute lymphoblastic leukemia, matching the potency of CAR T cells engineered at the TRAC locus and effectively resisting tumor rechallenge 100 days after their infusion. The identification of functional extragenic GSHs thus expands the human genome available for therapeutic precision engineering.


Subject(s)
Receptors, Antigen, T-Cell , T-Lymphocytes , Animals , Mice , Humans , Genetic Vectors , Immunotherapy, Adoptive , Cell Engineering , Genomics , Antigens, CD19
14.
Cell ; 186(2): 446-460.e19, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36638795

ABSTRACT

Precise targeting of large transgenes to T cells using homology-directed repair has been transformative for adoptive cell therapies and T cell biology. Delivery of DNA templates via adeno-associated virus (AAV) has greatly improved knockin efficiencies, but the tropism of current AAV serotypes restricts their use to human T cells employed in immunodeficient mouse models. To enable targeted knockins in murine T cells, we evolved Ark313, a synthetic AAV that exhibits high transduction efficiency in murine T cells. We performed a genome-wide knockout screen and identified QA2 as an essential factor for Ark313 infection. We demonstrate that Ark313 can be used for nucleofection-free DNA delivery, CRISPR-Cas9-mediated knockouts, and targeted integration of large transgenes. Ark313 enables preclinical modeling of Trac-targeted CAR-T and transgenic TCR-T cells in immunocompetent models. Efficient gene targeting in murine T cells holds great potential for improved cell therapies and opens avenues in experimental T cell immunology.


Subject(s)
Dependovirus , Genetic Engineering , T-Lymphocytes , Animals , Mice , CRISPR-Cas Systems/genetics , Dependovirus/genetics , Gene Targeting , Genetic Engineering/methods
15.
Nat Biotechnol ; 41(4): 521-531, 2023 04.
Article in English | MEDLINE | ID: mdl-36008610

ABSTRACT

Enhancing CRISPR-mediated site-specific transgene insertion efficiency by homology-directed repair (HDR) using high concentrations of double-stranded DNA (dsDNA) with Cas9 target sequences (CTSs) can be toxic to primary cells. Here, we develop single-stranded DNA (ssDNA) HDR templates (HDRTs) incorporating CTSs with reduced toxicity that boost knock-in efficiency and yield by an average of around two- to threefold relative to dsDNA CTSs. Using small-molecule combinations that enhance HDR, we could further increase knock-in efficiencies by an additional roughly two- to threefold on average. Our method works across a variety of target loci, knock-in constructs and primary human cell types, reaching HDR efficiencies of >80-90%. We demonstrate application of this approach for both pathogenic gene variant modeling and gene-replacement strategies for IL2RA and CTLA4 mutations associated with Mendelian disorders. Finally, we develop a good manufacturing practice (GMP)-compatible process for nonviral chimeric antigen receptor-T cell manufacturing, with knock-in efficiencies (46-62%) and yields (>1.5 × 109 modified cells) exceeding those of conventional approaches.


Subject(s)
CRISPR-Cas Systems , DNA, Single-Stranded , Humans , CRISPR-Cas Systems/genetics , DNA, Single-Stranded/genetics , Genome , Recombinational DNA Repair , Mutation , DNA , Gene Editing , DNA End-Joining Repair
16.
Sci Transl Med ; 14(670): eabm1463, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36350984

ABSTRACT

Chimeric antigen receptors (CARs) repurpose natural signaling components to retarget T cells to refractory cancers but have shown limited efficacy in persistent, recurrent malignancies. Here, we introduce "CAR Pooling," a multiplexed approach to rapidly identify CAR designs with clinical potential. Forty CARs with signaling domains derived from a range of immune cell lineages were evaluated in pooled assays for their ability to stimulate critical T cell effector functions during repetitive stimulation that mimics long-term tumor antigen exposure. Several domains were identified from the tumor necrosis factor (TNF) receptor family that have been primarily associated with B cells. CD40 enhanced proliferation, whereas B cell-activating factor receptor (BAFF-R) and transmembrane activator and CAML interactor (TACI) promoted cytotoxicity. These functions were enhanced relative to clinical benchmarks after prolonged antigen stimulation, and CAR T cell signaling through these domains fell into distinct states of memory, cytotoxicity, and metabolism. BAFF-R CAR T cells were enriched for a highly cytotoxic transcriptional signature previously associated with positive clinical outcomes. We also observed that replacing the 4-1BB intracellular signaling domain with the BAFF-R signaling domain in a clinically validated B cell maturation antigen (BCMA)-specific CAR resulted in enhanced activity in a xenotransplant model of multiple myeloma. Together, these results show that CAR Pooling is a general approach for rapid exploration of CAR architecture and activity to improve the efficacy of CAR T cell therapies.


Subject(s)
Neoplasm Recurrence, Local , Receptors, Chimeric Antigen , Humans , Neoplasm Recurrence, Local/metabolism , B-Cell Maturation Antigen , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , T-Lymphocytes , Immunotherapy , Signal Transduction
17.
Nat Immunol ; 23(10): 1424-1432, 2022 10.
Article in English | MEDLINE | ID: mdl-36138187

ABSTRACT

B cell progenitor acute lymphoblastic leukemia (B-ALL) treatment has been revolutionized by T cell-based immunotherapies-including chimeric antigen receptor T cell therapy (CAR-T) and the bispecific T cell engager therapeutic, blinatumomab-targeting surface glycoprotein CD19. Unfortunately, many patients with B-ALL will fail immunotherapy due to 'antigen escape'-the loss or absence of leukemic CD19 targeted by anti-leukemic T cells. In the present study, we utilized a genome-wide CRISPR-Cas9 screening approach to identify modulators of CD19 abundance on human B-ALL blasts. These studies identified a critical role for the transcriptional activator ZNF143 in CD19 promoter activation. Conversely, the RNA-binding protein, NUDT21, limited expression of CD19 by regulating CD19 messenger RNA polyadenylation and stability. NUDT21 deletion in B-ALL cells increased the expression of CD19 and the sensitivity to CD19-specific CAR-T and blinatumomab. In human B-ALL patients treated with CAR-T and blinatumomab, upregulation of NUDT21 mRNA coincided with CD19 loss at disease relapse. Together, these studies identify new CD19 modulators in human B-ALL.


Subject(s)
Burkitt Lymphoma , Lymphoma, B-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Antigens, CD19/genetics , Antigens, CD19/metabolism , Cleavage And Polyadenylation Specificity Factor/metabolism , Humans , Immunotherapy, Adoptive/adverse effects , Membrane Glycoproteins/metabolism , Polyadenylation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Chimeric Antigen/metabolism , Trans-Activators/metabolism
18.
Nature ; 609(7925): 174-182, 2022 09.
Article in English | MEDLINE | ID: mdl-36002574

ABSTRACT

The efficacy of adoptive T cell therapies for cancer treatment can be limited by suppressive signals from both extrinsic factors and intrinsic inhibitory checkpoints1,2. Targeted gene editing has the potential to overcome these limitations and enhance T cell therapeutic function3-10. Here we performed multiple genome-wide CRISPR knock-out screens under different immunosuppressive conditions to identify genes that can be targeted to prevent T cell dysfunction. These screens converged on RASA2, a RAS GTPase-activating protein (RasGAP) that we identify as a signalling checkpoint in human T cells, which is downregulated upon acute T cell receptor stimulation and can increase gradually with chronic antigen exposure. RASA2 ablation enhanced MAPK signalling and chimeric antigen receptor (CAR) T cell cytolytic activity in response to target antigen. Repeated tumour antigen stimulations in vitro revealed that RASA2-deficient T cells show increased activation, cytokine production and metabolic activity compared with control cells, and show a marked advantage in persistent cancer cell killing. RASA2-knockout CAR T cells had a competitive fitness advantage over control cells in the bone marrow in a mouse model of leukaemia. Ablation of RASA2 in multiple preclinical models of T cell receptor and CAR T cell therapies prolonged survival in mice xenografted with either liquid or solid tumours. Together, our findings highlight RASA2 as a promising target to enhance both persistence and effector function in T cell therapies for cancer treatment.


Subject(s)
Antigens, Neoplasm , Neoplasms , T-Lymphocytes , ras GTPase-Activating Proteins , Animals , Antigens, Neoplasm/immunology , Bone Marrow , CRISPR-Cas Systems , Disease Models, Animal , Gene Knockdown Techniques , Humans , Immunotherapy, Adoptive , Leukemia/immunology , Leukemia/pathology , Leukemia/therapy , Mice , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Time Factors , Xenograft Model Antitumor Assays , ras GTPase-Activating Proteins/deficiency , ras GTPase-Activating Proteins/genetics
19.
Nat Biomed Eng ; 6(11): 1284-1297, 2022 11.
Article in English | MEDLINE | ID: mdl-35941192

ABSTRACT

The production of autologous T cells expressing a chimaeric antigen receptor (CAR) is time-consuming, costly and occasionally unsuccessful. T-cell-derived induced pluripotent stem cells (TiPS) are a promising source for the generation of 'off-the-shelf' CAR T cells, but the in vitro differentiation of TiPS often yields T cells with suboptimal features. Here we show that the premature expression of the T-cell receptor (TCR) or a constitutively expressed CAR in TiPS promotes the acquisition of an innate phenotype, which can be averted by disabling the TCR and relying on the CAR to drive differentiation. Delaying CAR expression and calibrating its signalling strength in TiPS enabled the generation of human TCR- CD8αß+ CAR T cells that perform similarly to CD8αß+ CAR T cells from peripheral blood, achieving effective tumour control on systemic administration in a mouse model of leukaemia and without causing graft-versus-host disease. Driving T-cell maturation in TiPS in the absence of a TCR by taking advantage of a CAR may facilitate the large-scale development of potent allogeneic CD8αß+ T cells for a broad range of immunotherapies.


Subject(s)
Induced Pluripotent Stem Cells , Receptors, Chimeric Antigen , Mice , Animals , Humans , T-Lymphocytes , Induced Pluripotent Stem Cells/metabolism , Receptors, Antigen, T-Cell , CD8 Antigens/metabolism , Receptors, Chimeric Antigen/metabolism
20.
Nat Commun ; 13(1): 4121, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840578

ABSTRACT

The myeloma surface proteome (surfaceome) determines tumor interaction with the microenvironment and serves as an emerging arena for therapeutic development. Here, we use glycoprotein capture proteomics to define the myeloma surfaceome at baseline, in drug resistance, and in response to acute drug treatment. We provide a scoring system for surface antigens and identify CCR10 as a promising target in this disease expressed widely on malignant plasma cells. We engineer proof-of-principle chimeric antigen receptor (CAR) T-cells targeting CCR10 using its natural ligand CCL27. In myeloma models we identify proteins that could serve as markers of resistance to bortezomib and lenalidomide, including CD53, CD10, EVI2B, and CD33. We find that acute lenalidomide treatment increases activity of MUC1-targeting CAR-T cells through antigen upregulation. Finally, we develop a miniaturized surface proteomic protocol for profiling primary plasma cell samples with low inputs. These approaches and datasets may contribute to the biological, therapeutic, and diagnostic understanding of myeloma.


Subject(s)
Multiple Myeloma , Drug Resistance , Humans , Immunotherapy/methods , Lenalidomide/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Proteomics , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL