Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Case Rep Pediatr ; 2024: 4896940, 2024.
Article in English | MEDLINE | ID: mdl-38962685

ABSTRACT

Background: The diagnostic process for identifying variations in sex development (DSD) remains challenging due to the limited availability of evidence pertaining to the association between phenotype and genotype. DSD incidence is reported as 2 in 10,000 births, and the etiology has been attributed to genetic causes. Case Presentation. The present study investigated genetic causes implicated in a case of a 15-year-old 46, XY patient, raised as a girl. Genetic analysis by clinical exome sequencing (CES) showed a digenic inheritance due to two known pathogenic mutations in the DHX37 gene and the MAMLD1 gene, while we excluded variants with pathogenic significance in 209 DSD-related genes. Conclusions: Based on our literature review, this is the first case with the combined presence of pathogenic mutations in the MAMLD1 gene and DHX37 gene in a patient with gonadal dysgenesis.

2.
Curr Issues Mol Biol ; 46(4): 3209-3217, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38666931

ABSTRACT

Fetal anomalies, characterized by structural or functional abnormalities occurring during intrauterine life, pose a significant medical challenge, with a notable prevalence, affecting approximately 2-3% of live births and 20% of spontaneous miscarriages. This study aims to identify the genetic cause of ultrasound anomalies through clinical exome sequencing (CES) analysis. The focus is on utilizing CES analysis in a trio setting, involving the fetuses and both parents. To achieve this objective, prenatal trio clinical exome sequencing was conducted in 51 fetuseses exhibiting ultrasound anomalies with previously negative results from chromosomal microarray (CMA) analysis. The study revealed pathogenic variants in 24% of the analyzed cases (12 out of 51). It is worth noting that the findings include de novo variants in 50% of cases and the transmission of causative variants from asymptomatic parents in 50% of cases. Trio clinical exome sequencing stands out as a crucial tool in advancing prenatal diagnostics, surpassing the effectiveness of relying solely on chromosomal microarray analysis. This underscores its potential to become a routine diagnostic standard in prenatal care, particularly for cases involving ultrasound anomalies.

3.
Cytogenet Genome Res ; 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37899027

ABSTRACT

There is evidence that complex disease and mortality are associated with DNA methylation (DNAm) and age acceleration. Numerous epigenetic clocks, including Horvath, Hannum, DNA PhenoAge, DNA GrimAge, and DunedinPoAm continue to be developed in this young scientific field. The most well-known epigenetic clocks are presented here, along with information about how they relate to chronic disease. We examined all the literature until January 2023, investigating associations between measures of age acceleration and complex and age-related diseases. We focused on the scientific literature and researches that are most strongly associated with epigenetic clocks and that have shown promise as biomarkers for obesity, cardiovascular illness, type 2 diabetes, and neurodegenerative disease. Understanding the complex interactions between accelerated epigenetic clocks and chronic diseases may have significant effects on both the early diagnosis of disease and health promotion. Additionally, there is a lot of interest in developing treatment plans that can delay the onset of illnesses or, at the very least, alter the underlying causes of such disorders.

4.
Mol Genet Metab Rep ; 37: 101000, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37662494

ABSTRACT

ACM is a rare hereditary heart disease characterized by a progressive fibro-fatty replacement of the myocardium that can affect either the right or the left ventricle or both. It is mainly caused by variants in the desmosome genes with autosomal dominant transmission and incomplete penetrance. The disease shows a wide spectrum of clinical manifestations, including ventricular arrhythmias, HF and myocarditis. The latter is considered a 'hot phase' in the natural history of the disease and must therefore be distinguished from the isolated AM, which is frequently due to viral infections. Our case report is an example of how an AM, as the first manifestation of the disease, helped to reach a diagnosis of ACM through the genetic analysis. In fact, the multi-parametric investigation, which also included CMR and EMB, revealed controversial aspects that led us to perform the genetic test. The latter revealed a heterozygous pathogenic variant in the PKP2 that was considered definitive proof of ACM.

5.
Int J Mol Sci ; 24(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37569667

ABSTRACT

Microcephalic Osteodysplastic Primordial Dwarfism type II (MOPDII) represents the most common form of primordial dwarfism. MOPD clinical features include severe prenatal and postnatal growth retardation, postnatal severe microcephaly, hypotonia, and an increased risk for cerebrovascular disease and insulin resistance. Autosomal recessive biallelic loss-of-function genomic variants in the centrosomal pericentrin (PCNT) gene on chromosome 21q22 cause MOPDII. Over the past decade, exome sequencing (ES) and massive RNA sequencing have been effectively employed for both the discovery of novel disease genes and to expand the genotypes of well-known diseases. In this paper we report the results both the RNA sequencing and ES of three patients affected by MOPDII with the aim of exploring whether differentially expressed genes and previously uncharacterized gene variants, in addition to PCNT pathogenic variants, could be associated with the complex phenotype of this disease. We discovered a downregulation of key factors involved in growth, such as IGF1R, IGF2R, and RAF1, in all three investigated patients. Moreover, ES identified a shortlist of genes associated with deleterious, rare variants in MOPDII patients. Our results suggest that Next Generation Sequencing (NGS) technologies can be successfully applied for the molecular characterization of the complex genotypic background of MOPDII.


Subject(s)
Dwarfism , Microcephaly , Osteochondrodysplasias , Humans , Female , Pregnancy , Microcephaly/genetics , Exome/genetics , Transcriptome , Fetal Growth Retardation/genetics , Dwarfism/genetics , Osteochondrodysplasias/genetics , Genotype , Mutation
6.
Viral Immunol ; 36(5): 343-350, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37140898

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapidly resulted in a pandemic constituting a global health emergency. As an indicator of long-term immune protection from reinfection with the SARS-CoV-2 virus, the presence of memory B cells (MBCs) should be evaluated. Since the beginning of COVID-19 pandemic, several variants of concerns have been detected, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1/B.1.1.28.1), Delta (B.1.617.2), and Omicron (BA.1) variants with several different mutations, causing serious concern regarding the increased frequency of reinfection, and limiting the effectiveness of the vaccine response. At this regard, we investigated SARS-CoV-2-specific cellular immune responses in four different cohorts: COVID-19, COVID-19 infected and vaccinated, vaccinated, and negative subjects. We found that MBC response to SARS-CoV-2 at more than 11 months postinfection was higher in the peripheral blood of all COVID-19 infected and vaccinated subjects respect to all the other groups. Moreover, to better characterize the differences of SARS-CoV-2 variants immune responses, we genotyped SARS-CoV-2-positive samples from the patients' cohort. We found a higher level of immunoglobulin M+ (IgM+) and IgG+ spike MBCs in SARS-CoV-2-positive patients (5-8 months after symptoms onset) infected with the SARS-CoV-2-Delta variant compared with the SARS-CoV-2-Omicron variant implying a higher immune memory response. Our findings showed that MBCs persist more than 11 months after primary infection indicating a different involvement of the immune system according to the different SARS-CoV-2 variant that infected the host.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Memory B Cells , Pandemics , Reinfection , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral
7.
Front Cardiovasc Med ; 10: 1112759, 2023.
Article in English | MEDLINE | ID: mdl-37089884

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease, characterized by the presence of unexplained left ventricular hypertrophy. This condition is often associated with electrocardiographic abnormalities including QTc prolongation occurring in 13% of patients. The main explanation for prolonged QTc in HCM is myocardial hypertrophy and the related structural damage. However, other mechanisms, including long QT syndrome (LQTS) genes mutations, may be involved. In the present study we explored the hypothesis of a distinct genetic basis underlying QTc prolongation in HCM by investigating the potential co-inheritance of pathogenic gene variants associated with LQTS and HCM. For this purpose, starting from a cohort of 150 HCM patients carrying pathogenic variants in sarcomere genes, we selected 25 patients carrying a QTc prolongation unexplained by any other cause. The QTc was considered prolonged if greater than 450 ms in males and greater than 470 ms in females. The NGS analysis was performed with Illumina TrueSight Cardio panel genes on Illumina MiniSeq platform. We identified pathogenic/likely pathogenic variants in the KCNQ1 in two patients (c.1781G > A, p. Arg594Gln; c.532G > A, p. Ala178Thr) (8%). Variants of uncertain significance were identified in SCN5A, KCNJ5, AKAP9 and ANK2 in four patients (16%). Although the results are limited by the small number of patients included in the study, they highlight a minor contribution of LQTS genes for QTc prolongation in HCM patients. The screening for ion channel genes mutations may be considered in HCM patients with prolonged QTc unexplained by any other cause. This in-depth molecular diagnosis may contribute to improve risk stratification and treatment planning.

8.
Curr Issues Mol Biol ; 45(3): 2422-2430, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36975527

ABSTRACT

Both genetic and environmental factors contribute to the development of dilated cardiomyopathy. Among the genes involved, TTN mutations, including truncated variants, explain 25% of DCM cases. We performed genetic counseling and analysis on a 57-year-old woman diagnosed with severe DCM and presenting relevant acquired risk factors for DCM (hypertension, diabetes, smoking habit, and/or previous alcohol and cocaine abuse) and with a family history of both DCM and sudden cardiac death. The left ventricular systolic function, as assessed by standard echocardiography, was 20%. The genetic analysis performed using TruSight Cardio panel, including 174 genes related to cardiac genetic diseases, revealed a novel nonsense TTN variant (TTN:c.103591A > T, p.Lys34531*), falling within the M-band region of the titin protein. This region is known for its important role in maintaining the structure of the sarcomere and in promoting sarcomerogenesis. The identified variant was classified as likely pathogenic based on ACMG criteria. The current results support the need of genetic analysis in the presence of a family history, even when relevant acquired risk factors for DCM may have contributed to the severity of the disease.

9.
Exp Ther Med ; 25(2): 100, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36761008

ABSTRACT

Chromosome 3q syndrome is a well-known genetic condition caused by interstitial deletion in the long arm of chromosome 3. The phenotype of this syndrome is variable and the great variability in the extent of these deletions leads to a wide spectrum of clinical manifestations. Terminal 12p deletion represents one of the rarest subtelomeric imbalances; patients with distal monosomy 12p present different phenotypes ranging from muscular hypotonia to autism spectrum disorders. The present study reported a prenatal diagnosis of a male fetus presenting ultrasound evidence of corpus callosum dysplasia and ventriculomegaly showing a 3q13q21.2 deletion and a 12p13.33 microdeletion paternally inherited. Among several features previously attributed to the terminal deletion of 3q, corpus callosum dysplasia and ventriculomegaly have rarely been reported together. As the 12p13.33 microdeletion in the father was associated only with muscular hypotonia and joint laxity, the involvement of terminal 12p deletions in the clinical features of the fetus was not possible to verify during the prenatal period. The present case report may provide a reference for prenatal diagnosis and genetic counseling in patients who present 3q13q21.2 deletions and 12p13.33 microdeletion.

10.
Diagnostics (Basel) ; 12(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36553004

ABSTRACT

Pseudo-anodontia consists in the clinical, not radiographic, absence of teeth, due to failure in their eruption. It has been reported as part of an extremely rare syndrome, named GAPO syndrome. Pseudo-hypoparathyroidism type 1a (PHPT-1a) is a rare condition, characterized by resistance to the parathyroid hormone (PTH), as well as to many other hormones, and resulting in hypocalcemia, hyperphosphatemia, and elevated PTH. We report here the case of a 32-year-old woman with a long-standing history of non-treated hypocalcemia, in the context of an undiagnosed PHPT-1a. She had an intellectual disability, showed clinical features of the Albright hereditary osteodystrophy (AHO) and presented signs of multiple hormone resistances. She received treatment for seizures since the age of six. Examination of her mouth revealed a complete absence of teeth. Treatment of hypocalcemia and hormone deficiencies were started only at 29 years of age. Genetic testing demonstrated the presence of a frameshift variant in the GNAS gene in the proband as well as in her mother. A Single Nucleotide Polymorphism (SNP) array analysis failed to demonstrate pathogenic copy number variants (CNVs) but showed several regions with loss of heterozygosity (LOHs) for a final percentage of 1.75%, compatible with a fifth degree of relationship. Clinical exome sequencing (CES) ruled out any damaging variants in all the teeth agenesis-related genes. In conclusion, although we performed an extensive genetic analysis in search of possible additional gene alterations that could explain the presence of the peculiar phenotypic characteristics observed in our patient, we could not find any additional genetic defects. Our results suggest that the association of genetically confirmed PHPT-1a and complete pseudo-anodontia associated with persistent patchy alopecia areata is a new additional nonclassical feature related to the GNAS pathogenic variant.

11.
Genes (Basel) ; 13(12)2022 12 02.
Article in English | MEDLINE | ID: mdl-36553536

ABSTRACT

Agnathia-otocephaly complex (AOC) is a rare and usually lethal malformation typically characterized by hypoplasia or the absence of the mandible, ventromedial and caudal displacement of the ears with or without the fusion of the ears, a small oral aperture with or without a tongue hypoplasia. Its incidence is reported as 1 in 70,000 births and its etiology has been attributed to both genetic and teratogenic causes. AOC is characterized by a wide severity clinical spectrum even when occurring within the same family, ranging from a mild mandibular defect to an extreme facial aberration incompatible with life. Most AOC cases are due to a de novo sporadic mutation. Given the genetic heterogeneity, many genes have been reported to be implicated in this disease but to date, the link to only two genes has been confirmed in the development of this complex: the orthodenticle homeobox 2 (OTX2) gene and the paired related homeobox 1 (PRRX1) gene. In this article, we report a case of a fetus with severe AOC, diagnosed in routine ultrasound scan in the first trimester of pregnancy. The genetic analysis showed a novel 10 bp deletion mutation c.766_775delTTGGGTTTTA in the OTX2 gene, which has never been reported before, together with a missense variant c.778T>C in cis conformation.


Subject(s)
Abnormalities, Multiple , Craniofacial Abnormalities , Jaw Abnormalities , Pregnancy , Female , Humans , Genes, Homeobox , Craniofacial Abnormalities/genetics , Jaw Abnormalities/genetics , Abnormalities, Multiple/genetics , Homeodomain Proteins/genetics , Otx Transcription Factors/genetics
12.
Diagnostics (Basel) ; 12(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36359527

ABSTRACT

Juvenile polyposis syndrome (JPS) is an autosomal dominant disorder characterized by hyperplastic polyps in the upper and lower gastrointestinal (GI) tract with a high risk of developing GI cancers. We have described a three-generation Italian family with all the spectrum of SMAD4 phenotype. A multigene panel test was performed on the genomic DNA of the proband by next-generation sequencing, including genes related to hereditary GI tumor syndromes. Molecular analysis revealed the presence of the c.1140-2A>G substitution in the SMAD4 gene, a novel splice variant that has never been described before. Our family is remarkable in that it illustrates the variable expressivity of the SMAD4 phenotype within the same family. The possibility of phenotype variability should also be considered within family members carrying the same mutation. In JPS, a timely genetic diagnosis allows clinicians to better manage patients and to provide early surveillance and intervention for their asymptomatic mutated relatives in the early decades of life.

15.
Vaccines (Basel) ; 10(3)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35335115

ABSTRACT

Since 2020, the COVID-19 pandemic has spread worldwide, causing health, economic, and social distress. Containment strategies rely on rapid and consistent methodology for molecular detection and characterization. Emerging variants of concern (VOCs) are currently associated with increased infectivity and immune escape (natural defence mechanisms and vaccine). Several VOCs have been detected, including Alpha variant (B.1.1.7), Beta variant (B.1.351), Gamma variant (P.1/B.1.1.28.1) and Delta variant (B.1.617.2), first identified in the UK, South Africa, Brazil and India, respectively. Here, a rapid and low-cost technique was validated to distinguish the Alpha, Beta, Gamma, and Delta SARS-CoV-2 variants by detecting spike gene mutations using a real-time reverse transcription polymerase chain reaction methodology (RT-PCR). A total of 132 positive patients affected by coronavirus disease-19 (COVID-19) were analysed by employing RT-PCR to target single-nucleotide polymorphisms (SNPs) to screen spike protein mutations. All data were validated by the next-generation sequencing (NGS) methodology and using sequences from a public database. Among 132 COVID-19-positive samples, we were able to discriminate all of the investigated SARS-CoV-2 variants with 100% concordance when compared with the NGS method. RT-PCR -based assays for identifying circulating VOCs of SARS-CoV-2 resulted in a rapid method used to identify specific SARS-CoV-2 variants, allowing for a better survey of the spread of the virus and its transmissibility in the pandemic phase.

16.
Acta Virol ; 65(4): 333-338, 2021.
Article in English | MEDLINE | ID: mdl-34796710

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated disease Coronavirus disease 2019 (COVID-19) continues to spread throughout the world, causing millions of infections and dead. One major question in predicting the course of the COVID-19 pandemic is how well and how long the immune response protects the host from reinfection. Although more studies are needed, evidence suggests that virus-specific B cell response in people with SARS-CoV-2 infection is rapidly generated and seems to be more reliable marker of long-lasting humoral responses than serum antibodies. Here we reviewed all related major studies of immune response to SARS-CoV-2 virus to better understand the natural protection against the virus, and the risk of reinfection. The ability of our community to eradicate this virus will mostly depend on our knowledge of the immune response, critical not only for vaccine development and distribution but also for therapeutic options. Keywords: SARS-CoV-2 virus reinfection; humoral immune response; SARS-CoV-2 virus variants; vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunity, Humoral , Pandemics , Reinfection , Vaccine Development
17.
Am J Hum Genet ; 108(12): 2238-2247, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34798051

ABSTRACT

Chromosome imbalance (aneuploidy) is the major cause of pregnancy loss and congenital disorders in humans. Analyses of small biopsies from human embryos suggest that aneuploidy commonly originates during early divisions, resulting in mosaicism. However, the developmental potential of mosaic embryos remains unclear. We followed the distribution of aneuploid chromosomes across 73 unselected preimplantation embryos and 365 biopsies, sampled from four multifocal trophectoderm (TE) samples and the inner cell mass (ICM). When mosaicism impacted fewer than 50% of cells in one TE biopsy (low-medium mosaicism), only 1% of aneuploidies affected other portions of the embryo. A double-blinded prospective non-selection trial (NCT03673592) showed equivalent live-birth rates and miscarriage rates across 484 euploid, 282 low-grade mosaic, and 131 medium-grade mosaic embryos. No instances of mosaicism or uniparental disomy were detected in the ensuing pregnancies or newborns, and obstetrical and neonatal outcomes were similar between the study groups. Thus, low-medium mosaicism in the trophectoderm mostly arises after TE and ICM differentiation, and such embryos have equivalent developmental potential as fully euploid ones.


Subject(s)
Aneuploidy , Blastocyst , Embryonic Development/genetics , Fertilization in Vitro , Genetic Testing , Mosaicism/embryology , Blastocyst/pathology , Double-Blind Method , Embryo Transfer , Female , Fertilization in Vitro/methods , Humans , Incidence , Infant, Newborn , Male , Pregnancy , Pregnancy Outcome , Prospective Studies
18.
Genes (Basel) ; 12(10)2021 10 16.
Article in English | MEDLINE | ID: mdl-34681020

ABSTRACT

The 4q deletion syndrome is a well-known rare genetic condition caused by partial, terminal, or interstitial deletion in the long arm (q) of chromosome 4. The phenotype of this syndrome shows a broad spectrum of clinical manifestations due to the great variability in the size and location of the deletion. In the literature, the mostly terminal deletions of chromosome 4q and the relative phenotypes are described, while the interstitial deletions of the long arm of chromosome 4 are rarely cited. Here, we report on a female fetus presenting no abnormal ultrasound evidence but with multiple chromosome aberrations. Comparative genomic hybridization (aCGH) revealed an interstitial 10.09 Mb deletion at the chromosome at the region of 4q28, arr[hg19] 4q28.1q28.3 (124068262_134158728)x1 combined with a 386.81 Kb microduplication at chromosome 15q11.1, arr[hg19] 15.11 (20249932_20636742)x3. At birth, and after 11 months, the baby was confirmed healthy and normal. The identification of this case allows for a deeper understanding of 4q syndrome and provides an explanation for the wide genetic/phenotypic spectrum of this pathology. This report can provide a reference for prenatal diagnosis and genetic counseling in patients who have similar cytogenetic abnormalities, and underlines the importance of reporting unusual variant chromosomes for diagnostic genetic purposes.


Subject(s)
Chromosome Aberrations , Chromosome Deletion , Chromosome Duplication/genetics , Prenatal Diagnosis , Chromosomes, Human, Pair 15/genetics , Chromosomes, Human, Pair 4/genetics , Comparative Genomic Hybridization , Female , Fetus , Genetic Predisposition to Disease , Humans , Maternal Inheritance/genetics , Paternal Inheritance , Ultrasonography
19.
PLoS One ; 16(8): e0255804, 2021.
Article in English | MEDLINE | ID: mdl-34352040

ABSTRACT

Advanced ovarian cancer is one of the most lethal gynecological tumor, mainly due to late diagnoses and acquired drug resistance. MicroRNAs (miRNAs) are small-non coding RNA acting as tumor suppressor/oncogenes differentially expressed in normal and epithelial ovarian cancer and has been recognized as a new class of tumor early detection biomarkers as they are released in blood fluids since tumor initiation process. Here, we evaluated by droplet digital PCR (ddPCR) circulating miRNAs in serum samples from healthy (N = 105) and untreated ovarian cancer patients (stages I to IV) (N = 72), grouped into a discovery/training and clinical validation set with the goal to identify the best classifier allowing the discrimination between earlier ovarian tumors from health controls women. The selection of 45 candidate miRNAs to be evaluated in the discovery set was based on miRNAs represented in ovarian cancer explorative commercial panels. We found six miRNAs showing increased levels in the blood of early or late-stage ovarian cancer groups compared to healthy controls. The serum levels of miR-320b and miR-141-3p were considered independent markers of malignancy in a multivariate logistic regression analysis. These markers were used to train diagnostic classifiers comprising miRNAs (miR-320b and miR-141-3p) and miRNAs combined with well-established ovarian cancer protein markers (miR-320b, miR-141-3p, CA-125 and HE4). The miRNA-based classifier was able to accurately discriminate early-stage ovarian cancer patients from health-controls in an independent sample set (Sensitivity = 80.0%, Specificity = 70.3%, AUC = 0.789). In addition, the integration of the serum proteins in the model markedly improved the performance (Sensitivity = 88.9%, Specificity = 100%, AUC = 1.000). A cross-study validation was carried out using four data series obtained from Gene Expression Omnibus (GEO), corroborating the performance of the miRNA-based classifier (AUCs ranging from 0.637 to 0.979). The clinical utility of the miRNA model should be validated in a prospective cohort in order to investigate their feasibility as an ovarian cancer early detection tool.


Subject(s)
Ovarian Neoplasms , Adult , Biomarkers, Tumor , Early Detection of Cancer , Female , Humans , Middle Aged
20.
Pathogens ; 10(5)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067881

ABSTRACT

The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) and the associated coronavirus disease 2019 (COVID-19) continue to spread throughout the world, causing more than 120 million infections. Several variants of concern (VOCs) have emerged and spread with implications for vaccine efficacy, therapeutic antibody treatments, and possible reinfections. On 17 March 2021, several VOCs were detected, including lineage B.1.1.7, first identified in the UK, B.1.351 in South Africa, Lineage P.1 (B.1.1.28.1) in Brazil, and novel Sub-Lineage A (A.23.1), reported in Uganda, and B.1.525, reported in Nigeria. Here, we describe an 83-year-old man infected with the SARS-CoV-2 P.1 variant after two doses of the BNT162b2 mRNA COVID-19 vaccine.

SELECTION OF CITATIONS
SEARCH DETAIL
...