Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
J Exp Clin Cancer Res ; 43(1): 235, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164728

ABSTRACT

BACKGROUND: Ubiquitin-specific protease 15 (USP15) exhibits amplifications in various tumors, including gastric cancer (GC), yet its biological function and mechanisms in GC progression remain elusive. METHODS: Here, we established stable USP15 knockdown or overexpression GC cell lines and explored the potential mechanism of USP15 in GC. Besides, we also identified interacting targets of USP15. RESULTS: USP15 knockdown significantly impeded cell proliferation, invasion, epithelial-mesenchymal transition, and distal colonization in xenograft models, while enhancing oxaliplatin's antitumor effect. USP15 was involved in ubiquitination modification of glycolytic regulators. Silencing of USP15 suppressed glycolytic activity and impaired mitochondrial functions. Interference with USP15 expression reversed tumor progression and distal colonization in vivo. HKDC1 and IGF2BP3 were found as core interacting targets of USP15, and HKDC1 was identified as a substrate for ubiquitination modification by USP15, whereby USP15 regulated glucose metabolism activity by inhibiting the ubiquitination degradation of HKDC1. CONCLUSIONS: Our study unveiled aberrantly high expression of USP15 in GC tissues, correlating with malignant progression and nonresponse to neoadjuvant therapy. USP15 inhibitors, if developed, could be effective in promoting chemotherapy through glucose metabolism remodeling.


Subject(s)
Disease Progression , Glucose , Stomach Neoplasms , Ubiquitin-Specific Proteases , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Mice , Animals , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Glucose/metabolism , Cell Line, Tumor , Cell Proliferation , Male , Ubiquitination , Female , Epithelial-Mesenchymal Transition , Mice, Nude , Xenograft Model Antitumor Assays
2.
J Cancer ; 15(13): 4301-4312, 2024.
Article in English | MEDLINE | ID: mdl-38947376

ABSTRACT

Background: SIVA-1 has been reported to play a key role in cell apoptosis and gastric cancer (GC) chemoresistance in vitro. Nevertheless, the clinical significance of SIVA-1 in GC chemotherapy remains unclear. Methods and results: Immunohistochemistry and histoculture drug response assays were used to determine SIVA-1 expression and the inhibition rate (IR) of agents to GC and to further analyze the relationship between these two phenomena. Additionally, cisplatin (DDP)-resistant GC cells were used to elucidate the role and mechanism of SIVA-1 in vivo. The results demonstrated that SIVA-1 expression was positively correlated with the IR of DDP to GC but not with those of 5-fluorouracil (5-FU) or adriamycin (ADM). Furthermore, SIVA-1 overexpression with DDP treatment synergistically inhibited tumor growth in vivo by increasing PCBP1 and decreasing Bcl-2 and Bcl-xL expression. Conclusions: Our study demonstrated that SIVA-1 may serve as an indicator of the GC sensitivity to DDP, and the mechanism of SIVA-1 in GC resistance to DDP was preliminarily revealed.

3.
Medicine (Baltimore) ; 103(25): e38551, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905376

ABSTRACT

This research investigates the causal relationships among gut microbiota, inflammatory proteins, and inflammatory bowel disease (IBD), including crohn disease (CD) and ulcerative colitis (UC), and identifies the role of inflammatory proteins as potential mediators. Our study analyzed gut microbiome data from 13,266 samples collected by the MiBioGen alliance, along with inflammatory protein data from recent research by Zhao et al, and genetic data on CD and UC from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). We used Mendelian randomization (MR) to explore the associations, complemented by replication, meta-analysis, and multivariable MR techniques for enhanced accuracy and robustness. Our analysis employed several statistical methods, including inverse-variance weighting, MR-Egger, and the weighted median method, ensuring comprehensive and precise evaluation. After MR analysis, replication and meta-analysis, we revealed significant associations between 11 types of gut microbiota and 17 inflammatory proteins were associated with CD and UC. Mediator MR analysis and multivariable MR analysis showed that in CD, the CD40L receptor mediated the causal effect of Defluviitaleaceae UCG-011 on CD (mediation ratio 8.3%), and the Hepatocyte growth factor mediated the causal effect of Odoribacter on CD (mediation ratio 18%). In UC, the C-C motif chemokine 4 mediated the causal effect of Ruminococcus2 on UC (mediation ratio 4%). This research demonstrates the interactions between specific gut microbiota, inflammatory proteins, and CD and UC. Furthermore, the CD40L receptor may mediate the relationship between Defluviitaleaceae UCG-011 and CD; the Hepatocyte growth factor may mediate the relationship between Odoribacter and CD; and the C-C motif chemokine 4 may mediate the relationship between Ruminococcus2 and UC. The identified associations and mediation effects offer insights into potential therapeutic approaches targeting the gut microbiome for managing CD and UC.


Subject(s)
Gastrointestinal Microbiome , Mendelian Randomization Analysis , Humans , Gastrointestinal Microbiome/genetics , Crohn Disease/microbiology , Crohn Disease/genetics , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/genetics , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/genetics
5.
Heliyon ; 10(2): e24394, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312638

ABSTRACT

SIVA-1 has been shown to affect apoptotic processes in various different cell lines, and SIVA-1 significantly contributes to the decreased responsiveness of cancer cells to some chemotherapy agents. However, whether SIVA-1 has potential application in gastric cancer remains unknown. Therefore, the objective of this investigation was to clarify the distinct function of SIVA-1 in chemotherapeutic drug resistance within a living murine model with gastric malignancy, and initially elucidate the underlying mechanisms. In an established multidrug-resistant gastric cancer xenograft mouse model, lentivirus, named Lv-SIVA-1, was injected into xenograft tumors, and increased the mRNA and protein expression of endogenous SIVA-1 in tumors. Immunohistochemical assays of xenograft tumor showed that SIVA-1 was significantly upregulated, and the protein expression levels of SIVA-1 were highly increased, as detected by Western blotting. In addition, we detected the role of SIVA-1 in cell proliferation and cell apoptosis in gastric cancer cells by TUNEL and found that SIVA-1 decreased tumor cell apoptosis and promoted tumor growth in vivo. Using a TMT assay between tumor tissues of experimental and control groups, differentially expressed proteins were examined and three potential biomarkers of multidrug resistance (ARF, MDM2, and p53) were screened. We further investigated the molecular mechanism by which SIVA-1 played an efficient role against chemotherapies and found that overexpressed SIVA-1 leads to increased ARF and MDM2 expression and suppressed expression of p53 in tumor tissue. In conclusion, SIVA-1 plays a significant role in the multidrug resistance of gastric tumors. In addition, overexpressed SIVA-1 positively regulates cell proliferation, adjusts cycle progression, and reduces the response to drug treatment for gastric cancer in an ARF/MDM2/p53-dependent manner. This novel research provides a basis for chemical management of gastric cancer through regulation of SIVA-1 expression.

7.
Surg Open Sci ; 16: 121-126, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37876666

ABSTRACT

Duodenal stump fistula (DSF) is a serious complication of radical gastrectomy for gastric cancer. Herein, we illustrated an innovative choice for treating duodenal stump fistulas by placing a modified sump drainage through trocar puncture into the DSF-related abscess (DSF-abscess) cavity. We retrospectively analyzed 974 consecutive patients who underwent gastrectomy for gastric cancer between 2011 and 2021. Of these patients, 34 who developed postoperative duodenal stump fistulas postoperatively were enrolled into our study, and their clinical data were retrospectively assessed. From January 2011 to December 2017, 15 patients received conventional treatments (percutaneous catheter drainage, PCD group) known as the traditional percutaneous method, and 19 patients from January 2018 to December 2021 received new treatments (Troca's SD group) consisting of conventional therapies and placement of a modified sump drainage through trocar puncture into DSF-abscess cavity. The demographics, clinical characteristics and treatment outcomes were compared between two groups. Compared with the PCD group, the rates of postoperative complications, duodenostomy creation, subsequent surgery, fistula healing rates of the DSF, and length of postoperative hospital stay were significantly decreased in the Troca SD group. However, there was no significant difference in the abscess recurrence rate and mortality rates. Trocar puncture with a modified sump drainage is an safe, effective, and technically feasible treatment for duodenal stump fistula after radical gastrectomy for gastric cancer. This novel technique should be further investigated using large-scale RCT research.

8.
Cancer Med ; 12(15): 15893-15902, 2023 08.
Article in English | MEDLINE | ID: mdl-37306187

ABSTRACT

BACKGROUND: Neutrophil/lymphocyte ratio (NLR) is a vital index for systemic inflammation and a prognostic indicator for gastric cancer (GC). Despite the abundant literature on NLR's prognostic value for GC, the underlying factors mediating its impact on survival remain unclear. The objective of this study was to analyze the role of NLR in different prognostic models and subgroups, and investigate the mediating effects of immune infiltrates between NLR and survival. METHODS: A total of 924 patients who underwent D2 lymph node resection were enrolled in this study. According to the level of NLR, patients were divided into two groups, the high and low NLR groups. Clinical parameters, indexes related to immune infiltrates, and survival were compared between the two groups. Prognostic models, interaction analysis, and mediating effects analysis were performed to investigate the clinical association of NLR, immune infiltrates, and survival. RESULTS: The infiltration of CD3+ and CD8+ T cells was significantly different in the two NLR groups. The level of NLR was an independent prognostic predictor of GC. In addition, an interaction effect exists between NLR and MMR status on the prognosis of GC (p-interaction <0.01). Lastly, the mediating effect analysis revealed that the infiltration level of CD3+ T cells was the mediating factor between NLR and survival (p < 0.001). CONCLUSIONS: The level of NLR is an independent prognostic predictor of GC. The effect of NLR on prognosis is partly mediated by CD3+ T-cell infiltration.


Subject(s)
Neutrophils , Stomach Neoplasms , Humans , Neutrophils/pathology , Stomach Neoplasms/pathology , Lymphocytes/pathology , Prognosis , Lymphocyte Subsets/pathology , Retrospective Studies
9.
J Gynecol Obstet Hum Reprod ; 52(6): 102601, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37156420

ABSTRACT

OBJECTIVE: ovarian granulosa cell tumor (OGCT) is a kind of infrequent ovarian malignant tumor with limited epidemiological data available. we established a predictive nomograph to verify the clinical prognosis. METHODS: 1005 diagnosed with ovarian granulosa cell tumor (OGCT) were extracted from Surveillance, Epidemiology, and End Results (SEER) public database from 2000-2018. Kaplan-Meier analysis was applied to distinguish risk factors, univariate and multivariate Cox analyses were used to determine the independent prognostic factors for cancer-specific survival (CSS) of OGCT patients. The obtained prognostic variables were combined to construct a nomogram model for predicting CSS in OGCT patients. RESULTS: Model performance was detected and evaluated with ROC curves and calibration plots. Data collected from 1005 patients were divided into two groups: training cohort(n=703,70%) and validation cohort(n=302,30%). The multivariate Cox model identified five covariates including age, marital status, AJCC stages, surgery and chemotherapy as independent interfering factors of CSS. The nomogram has shown a promising and excellent accuracy in evaluating 3 -, 5 -, 8-year CSS in OGCT patients. In terms of the CSS of the training cohort, the AUC values of the 3 -, 5 -, 8-year ROC curves were 0.819,0.8,0.819, while in terms of the CSS of the validation cohort, the AUC values of the validation cohort were 0.822,0.84,0.823, respectively. All the calibration curves showed pleasant consistency between predicted and actual survival rates. The nomogram model established in the study can improve the veracity of prognosis prediction, thereby improving the accuracy of individualized survival risk assessment, and providing targeted and constructive recommendations for specific treatment options. CONCLUSION: Age, advanced clinical stage, widower and without surgery therapy are independent risk factors for poor prognosis and the nomogram we constructed can help clinicians efficiently recognize high-risk OGCT patients to guide targeted therapies and improve their outcomes.


Subject(s)
Granulosa Cell Tumor , Ovarian Neoplasms , Humans , Female , Nomograms , Granulosa Cell Tumor/epidemiology , Ovarian Neoplasms/epidemiology , Databases, Factual
10.
Research (Wash D C) ; 6: 0098, 2023.
Article in English | MEDLINE | ID: mdl-37223478

ABSTRACT

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high mortality, and the efficacy of monotherapy for TNBC is still disappointing. Here, we developed a novel combination therapy for TNBC based on a multifunctional nanohollow carbon sphere. This intelligent material contains a superadsorbed silicon dioxide sphere, sufficient loading space, a nanoscale hole on its surface, a robust shell, and an outer bilayer, and it could load both programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) small-molecule immune checkpoints and small-molecule photosensitizers with excellent loading contents, protect these small molecules during the systemic circulation, and achieve accumulation of them in tumor sites after systemic administration followed by the application of laser irradiation, thereby realizing dual attack of photodynamic therapy and immunotherapy on tumors. Importantly, we integrated the fasting-mimicking diet condition that can further enhance the cellular uptake efficiency of nanoparticles in tumor cells and amplify the immune responses, further enhancing the therapeutic effect. Thus, a novel combination therapy "PD-1/PD-L1 immune checkpoint blockade + photodynamic therapy + fasting-mimicking diet"was developed with the aid of our materials, which eventually achieved a marked therapeutic effect in 4T1-tumor-bearing mice. The concept can also be applied to the clinical treatment of human TNBC with guiding significance in the future.

11.
Mol Plant ; 16(6): 979-998, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37020418

ABSTRACT

Calcium-dependent protein kinases (CDPKs/CPKs) are key regulators of plant stress signaling that translate calcium signals into cellular responses by phosphorylating diverse substrate proteins. However, the molecular mechanism by which plant cells relay calcium signals in response to hypoxia remains elusive. Here, we show that one member of the CDPK family in Arabidopsis thaliana, CPK12, is rapidly activated during hypoxia through calcium-dependent phosphorylation of its Ser-186 residue. Phosphorylated CPK12 shuttles from the cytoplasm to the nucleus, where it interacts with and phosphorylates the group VII ethylene-responsive transcription factors (ERF-VII) that are core regulators of plant hypoxia sensing, to enhance their stabilities. Consistently, CPK12 knockdown lines show attenuated tolerance of hypoxia, whereas transgenic plants overexpressing CPK12 display improved hypoxia tolerance. Nonethelss, loss of function of five ERF-VII proteins in an erf-vii pentuple mutant could partially suppress the enhanced hypoxia-tolerance phenotype of CPK12-overexpressing lines. Moreover, we also discovered that phosphatidic acid and 14-3-3κ protein serve as positive and negative modulators of the CPK12 cytoplasm-to-nucleus translocation, respectively. Taken together, these findings uncover a CPK12-ERF-VII regulatory module that is key to transducing calcium signals from the cytoplasm into the nucleus to potentiate hypoxia sensing in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Nucleus/metabolism , Hypoxia , Gene Expression Regulation, Plant
12.
Sci China Life Sci ; 66(2): 298-312, 2023 02.
Article in English | MEDLINE | ID: mdl-36271983

ABSTRACT

The effects and regulation of Beclin-1-an autophagy-related protein-have not been fully defined, however, a negative correlation has been reported between Beclin-1 expression and carcinogenesis. Meanwhile, no compound has been shown to directly inhibit its activity. Here, we evaluate piceatannol, a naturally occurring polyphenolic compound, as a potential targeting agonist of Beclin-1, to assess its efficacy as an antitumor agent against gastric cancer. More specifically, we determine the effects of piceatannol treatment on cell viability using a monitoring system and colony forming assay. Piceatannol was found to efficiently inhibit the proliferation of several human gastric cancer cell lines. Autophagic flux is increased by piceatannol treatment, and correlates with inhibition of cell proliferation and colony formation. Additionally, microscale thermophoresis and surface plasmon resonance results show a direct interaction between piceatannol and Beclin-1, which reduces the phosphorylation activity of Beclin-1 at the Ser-295 site. Notably, piceatannol impairs the binding of Beclin-1 to Bcl-2 and enhances the recruitment of binding of UV radiation resistance-associated gene protein, which further triggers Beclin-1-dependent autophagy signaling. An increase in autophagic activity via treatment with the mTOR inhibitor, everolimus, effectively sensitizes piceatannol-induced antitumor effects. Xenograft models confirmed that piceatannol inhibits tumor development and elicits a potent synergistic effect with everolimus in vivo. Taken together, the findings of this study strongly support the application of combinatorial piceatannol and everolimus therapy in future clinical trials for gastric cancer patients.


Subject(s)
Everolimus , Stomach Neoplasms , Humans , Everolimus/pharmacology , Everolimus/therapeutic use , Beclin-1/metabolism , Stomach Neoplasms/drug therapy , Cell Line, Tumor , Autophagy , Apoptosis
13.
Chin J Cancer Res ; 35(6): 645-659, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38204447

ABSTRACT

Objective: The aim of this study was to prospectively compare double-tract reconstruction (DTR) and esophagogastrostomy (EG) after proximal gastrectomy (PG) regarding the incidence of reflux esophagitis, quality of life (QOL), nutritional status and surgical safety. Methods: This study was a randomized controlled trial. Patients eligible for PG were enrolled and randomly assigned to the EG group and DTR group. The characteristics of patients, parameters for surgical safety, incidence of reflux esophagitis, nutrition status and QOL were collected and compared between the two groups. Univariate analysis and multivariate analysis were performed to determine the significant factors affecting the incidence of reflux esophagitis after PG. Results: Thirty-seven patients of the EG group and 36 patients of the DTR group were enrolled. The incidence of reflux esophagitis was significantly lower in the DTR group than in the EG group (8.3% vs. 32.4%, P=0.019). The DTR group demonstrated a more favorable QOL than the EG group after PG. The nutritional status was balanced within the EG group and the DTR group. The operation time was longer in the DTR group than in the EG group (191 min vs. 221 min, P=0.001), while surgical safety was similar in the two groups. Conclusions: Our research demonstrated that DTR is superior to EG after PG in terms of the incidence of reflux esophagitis and provides a more satisfactory QOL without increasing surgical complications or sacrificing nutritional status.

14.
J Hepatocell Carcinoma ; 9: 1229-1246, 2022.
Article in English | MEDLINE | ID: mdl-36505941

ABSTRACT

Background: Microcystin-LR (MC-LR) and hepatitis B virus (HBV) are associated with hepatocellular carcinoma (HCC). However, the concentrations of MC-LR in drinking water and the synergistic effect of MC-LR and HBV on hepatocellular carcinogenesis through their disturbance of redox balance have not been fully elucidated. Methods: We measured the MC-LR concentrations in 168 drinking water samples of areas with a high incidence of HCC. The relationships between MC-LR and both redox status and liver diseases in 177 local residents were analyzed. The hepatoma cell line HepG2 transfected with C-terminal truncated hepatitis B virus X gene (Ct-HBX) were treated with MC-LR. Reactive oxygen species (ROS), superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) were measured. Cell proliferation, migration, invasion, and apoptosis were assessed with cell activity assays, scratch and transwell assays, and flow cytometry, respectively. The mRNA and protein expression-related redox status genes were analyzed with qPCR and Western blotting. Results: The average concentration of MC-LR in well water, river water and reservoir water were 57.55 ng/L, 76.74 ng/L and 132.86 ng/L respectively, and the differences were statistically significant (P < 0.05). The MC-LR levels in drinking water were correlated with liver health status, including hepatitis, clonorchiasis, glutamic pyruvic transaminase abnormalities and hepatitis B surface antigen carriage (all P values < 0.05). The serum MDA increased in subjects who drank reservoir water and were infected with HBV (P < 0.05). In the cell experiment, ROS increased when Ct-HBX-transfected HepG2 cells were treated with MC-LR, followed by a decrease in SOD and GSH and an increase in MDA. MC-LR combined with Ct-HBX promoted the proliferation, migration and invasion of HepG2 cells, upregulated the mRNA and protein expression of MAOA gene, and downregulated UCP2 and GPX1 genes. Conclusion: MC-LR and HBV may synergistically affect redox status and play an important role in hepatocarcinoma genesis.

15.
Genome Biol ; 23(1): 265, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36550535

ABSTRACT

BACKGROUND: The tumor microenvironment (TME) has been shown to strongly influence treatment outcome for cancer patients in various indications and to influence the overall survival. However, the cells forming the TME in gastric cancer have not been extensively characterized. RESULTS: We combine bulk and single-cell RNA sequencing from tumors and matched normal tissue of 24 treatment-naïve GC patients to better understand which cell types and transcriptional programs are associated with malignant transformation of the stomach. Clustering 96,623 cells of non-epithelial origin reveals 81 well-defined TME cell types. We find that activated fibroblasts and endothelial cells are most prominently overrepresented in tumors. Intercellular network reconstruction and survival analysis of an independent cohort imply the importance of these cell types together with immunosuppressive myeloid cell subsets and regulatory T cells in establishing an immunosuppressive microenvironment that correlates with worsened prognosis and lack of response in anti-PD1-treated patients. In contrast, we find a subset of IFNγ activated T cells and HLA-II expressing macrophages that are linked to treatment response and increased overall survival. CONCLUSIONS: Our gastric cancer single-cell TME compendium together with the matched bulk transcriptome data provides a unique resource for the identification of new potential biomarkers for patient stratification. This study helps further to elucidate the mechanism of gastric cancer and provides insights for therapy.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Endothelial Cells , Tumor Microenvironment , Gene Expression Profiling , Transcriptome , Single-Cell Analysis
16.
Adv Mater ; 34(47): e2205950, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36217832

ABSTRACT

Dendritic cells (DCs)-based vaccines are an approved method for inducing potent antigen-specific immune responses to eliminate tumor cells. However, this promising strategy still faces challenges such as tumor-associated antigens (TAAs) loading, lymph node homing, quality control, and other limitations. Here, a personalized DC-mimicking nanovaccine (nanoDC) for stimulation of TAAs-specific T cell populations is developed. The nanoDCs are fabricated using nanoparticles with dendritic structure and membranes from mature bone-marrow-derived cells (BMDCs). Mature BMDCs are stimulated by nanostructures assembled from Escherichia coli and tumor cells to efficiently deliver TAAs and induce BMDCs maturation through the stimulator of interferon genes (STING) pathway. By maintaining co-stimulatory markers, molecules class I (MHC-I) antigen complexes and lymphocyte homing receptors, nanoDCs efficiently migrate to lymph nodes and generate potent antigen-specific T cell responses. Consequently, vaccination with nanoDCs strongly inhibits the tumor growth and metastases formation in vivo. In particular, nanoDCs can also induce memory T cells for long-term protective immunity. This study demonstrates that nanoDCs can trigger adaptive immune protection against tumors for personalized immunotherapy and precision medicine.


Subject(s)
Dendritic Cells , Neoplasms , Animals , Mice , Antigens, Neoplasm , Immunotherapy/methods , Adaptive Immunity , Mice, Inbred C57BL
17.
Cell Death Discov ; 8(1): 5, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013132

ABSTRACT

Rapid proliferation and metastasis of gastric cancer (GC) resulted in a poor prognosis in the clinic. Previous studies elucidated that long non-coding RNA (LncRNA) LINC00205 was upregulated in various tumors and participated in tumor progression. The aim of our study was to investigate the regulating role of LINC00205 in tumorigenesis and metastasis of GC. Both public datasets and our data showed that the LINC00205 was highly expressed in GC tissues and several cell lines. Notably, GC patients with high level of LINC00205 had a poor prognosis in our cohort. Mechanistically, knockdown of LINC00205 by shRNAs suppressed GC cells proliferation, migration, invasion remarkably, and induced cell cycle arrest. Based on bioinformatics prediction, we found that LINC00205 might act as a competitive endogenous RNA (ceRNA) through targeting miR-26a. The level of miR-26a had negatively correlated with LINC00205 expression and was decreased among GC cell lines, tissues, and serum samples. Our results for the first time confirmed that miR-26a was a direct target of LINC00205 and might have the potential to become a plasma marker for clinical tumor diagnosis. Indeed, LINC00205 knockdown resulted in the dramatic promotion of miR-26a expression as well as inhibition of miR-26a potential downstream targets, such as HMGA2, EZH2, and USP15. These targets were essential for cell survival and epithelial-mesenchymal transition. Importantly, LINC00205 was able to remodel the miR-26a-mediated downstream silence, which identified a new mechanism of malignant transformation of GC cells. In conclusion, this study revealed the regulating role of the LINC00205/miR-26a axis in GC progression and provided a new potential therapeutic strategy for GC treatment.

18.
J Gastrointest Oncol ; 13(6): 2799-2808, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36636077

ABSTRACT

Background: Deoxyribonucleic acid (DNA) methyltransferase inhibitors, such as decitabine, have made great advances in cancer therapy as combinational drugs. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has an obvious anti-tumor effect; however, some gastric cancer (GC) cells are resistant to TRAIL-induced cell death. This study sought to explore the synergistic anti-tumor effect of TRAIL and decitabine, and the potential synergetic mechanism. Methods: The cell growth inhibition effect was monitored by the IncuCyte ZOOM Live-Cell Analysis System, and cell viability was determined by Cell Counting Kit-8 assays. Apoptosis was detected by Annexin V/Propidium Iodide double staining. Death receptor 4 (DR4) was knocked down by ribonucleic acid (RNA) interference, and the effect of DR4 deletion on TRAIL sensitivity was analyzed. Methylation-specific polymerase chain reaction (PCR) was applied to determine the methylation status of DR4. The messenger RNA (mRNA) and protein expression levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The expression of the DRs on the cell membrane surfaces was analyzed by flow cytometry. Results: The combined use of decitabine and TRAIL synergistically inhibited cell growth in 2 TRAIL-resistant cell lines. Further, decitabine augmented TRAIL-induced apoptosis in a caspase-dependent manner. The co-application of decitabine and TRAIL facilitated the activation of caspase-7, -8, -9, and poly ADP-ribose polymerase (PARP). Notably, decitabine increased the expression of DR4 at the transcriptional and post-transcriptional levels. DR4 expression on the cell membrane surfaces was also upregulated after decitabine exposure. The depletion of DR4 by specific inhibitors attenuated TRAIL-induced apoptosis and weakened the synergistic effects of decitabine and TRAIL. In addition, DR4 gene presented methylation status in SNU-1 cells. The low mRNA and protein expression of DR4 were also detected in SNU-1 cells. Conclusions: Decitabine enhances the effect of TRAIL by inhibiting the growth and inducing the apoptosis of GC cells. This is achieved by the epigenetic modification of decitabine, which upregulates DR4. Decitabine may act as a sensitizing agent of TRAIL. The combined use of decitabine and TRAIL may provide a novel idea for GC treatment.

19.
Front Mol Biosci ; 8: 720645, 2021.
Article in English | MEDLINE | ID: mdl-34733886

ABSTRACT

Background: ARHGAP11A, belongs to RhoGAPs family, is vital for cell motility. However, the role of ARHGAP11A in gastric cancer is obscure. Methods: The expression level of ARHGAP11A was analyzed by Oncomine database. The correlation of ARHGAP11A expression with immune infiltrates and associated gene markers was clarified by Tumor IMmune Estimation Resource and Gene Expression Profiling Interactive Analysis database. The correlation between ARHGAP11A expression and the patient prognosis was identified by Kaplan-Meier plotter and PrognoScan. Genetic changes of ARHGAP11A were analyzed by cBioPortal. The protein-protein interaction network and gene functional enrichment analysis were constructed and performed by GeneMANIA and Metascape. Results: We found that the expression levels of ARHGAP11A were elevated in various cancers including gastric cancer when compared with normal tissues. High expression of ARHGAP11A was significantly correlated with a better prognosis in gastric cancer. We revealed that the expression of ARHGAP11A was negatively associated with infiltration levels of CD8+ T cells, CD4+ T cells, macrophages and dendritic cells. In addition, ARHGAP11A expression was significantly correlated with gene markers of these immune cells. Lastly, gene functional enrichment analysis indicated that ARHGAP11A involved in regulating lymphocyte activation, cell division, cell killing, myeloid leukocyte differentiation and leukocyte apoptosis. Conclusion: Our findings demonstrated that ARHGAP11A was a valuable prognostic biomarker in gastric cancer. Further work is needed to validate its role and underlying mechanisms in regulating immune infiltrates.

20.
Am J Pathol ; 191(9): 1651-1667, 2021 09.
Article in English | MEDLINE | ID: mdl-34129844

ABSTRACT

Intrahepatic cholangiocarcinoma (iCCA) is a lethal malignant neoplasm with limited therapeutic options. Previous studies have found that Notch1 overexpression alone suffices to induce iCCA in the mouse, albeit after long latency. The current study found that activation of the Yes-associated protein (Yap) proto-oncogene occurs during Notch1-driven iCCA progression. After co-expressing activated Notch1 intracellular domain (Nicd) and Yap (YapS127A) in the mouse liver, rapid iCCA formation and progression occurred in Nicd/Yap mice. Mechanistically, an increased expression of amino acid transporters and activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway was detected in Nicd/Yap mouse liver tumors. Significantly, the genetic deletion of Raptor, the major mTORC1 component, completely suppressed iCCA development in Nicd/Yap mice. Elevated expression of Notch1, YAP, amino acid transporters, and members of the mTORC1 pathway was also detected ubiquitously in a collection of human iCCA specimens. Their levels were associated with a poor patient outcome. This study demonstrates that Notch and YAP concomitant activation is frequent in human cholangiocarcinogenesis. Notch and YAP synergize to promote iCCA formation by activating the mTORC1 pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Bile Duct Neoplasms/metabolism , Cholangiocarcinoma/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Receptor, Notch1/metabolism , Transcription Factors/metabolism , Adult , Aged , Animals , Bile Duct Neoplasms/pathology , Cholangiocarcinoma/pathology , Female , Humans , Male , Mice , Middle Aged , Proto-Oncogene Mas , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL