Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Chem Sci ; 15(29): 11374-11381, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39055034

ABSTRACT

Chiral hybrid metal halides (CHMHs) have received a considerable amount of attention in chiroptoelectronics, spintronics, and ferroelectrics due to their superior optoelectrical properties and structural flexibility. Owing to limitations in synthesis, the theoretical prediction of room-temperature stable chiral three-dimensional (3D) CHFClNH3PbI3 has not been successfully prepared, and the optoelectronic properties of such structures cannot be studied. Herein, we have successfully constructed two pairs of chiral 3D lead iodide hybrids (R/S/Rac-3AEP)Pb2I6 (3R/S/Rac, 3AEP = 3-(1-aminoethyl)pyridin-1-ium) and (R/S/Rac-2AEP)Pb2I6 (2R/S/Rac, 2AEP = 2-(1-aminoethyl)pyridin-1-ium) through chiral introduction and ortho substitution strategies, and obtained bulk single crystals of 3R/S/Rac. The 3R/S exhibits optical activity and bulk photovoltaic effect induced by chirality. The 3R crystal device exhibits stable circularly polarized light performance at 565 nm with a maximum anisotropy factor of 0.07, responsivity of 0.25 A W-1, and detectivity of 3.4 × 1012 jones. This study provides new insights into the synthesis of chiral 3D lead halide hybrids and the development of chiral electronic devices.

3.
Zool Res ; 45(3): 551-566, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38757223

ABSTRACT

Hepatocellular carcinoma (HCC), a prevalent solid carcinoma of significant concern, is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes. The etiology and pathological progression of non-alcoholic steatohepatitis (NASH)-related HCC is multifactorial and multistage. However, no single animal model can accurately mimic the full NASH-related HCC pathological progression, posing considerable challenges to transition and mechanistic studies. Herein, a novel conditional inducible wild-type human HRAS overexpressed mouse model (HRAS-HCC) was established, demonstrating 100% morbidity and mortality within approximately one month under normal dietary and lifestyle conditions. Advanced symptoms of HCC such as ascites, thrombus, internal hemorrhage, jaundice, and lung metastasis were successfully replicated in mice. In-depth pathological features of NASH- related HCC were demonstrated by pathological staining, biochemical analyses, and typical marker gene detections. Combined murine anti-PD-1 and sorafenib treatment effectively prolonged mouse survival, further confirming the accuracy and reliability of the model. Based on protein-protein interaction (PPI) network and RNA sequencing analyses, we speculated that overexpression of HRAS may initiate the THBS1-COL4A3 axis to induce NASH with severe fibrosis, with subsequent progression to HCC. Collectively, our study successfully duplicated natural sequential progression in a single murine model over a very short period, providing an accurate and reliable preclinical tool for therapeutic evaluations targeting the NASH to HCC continuum.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Proto-Oncogene Proteins p21(ras) , Animals , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Carcinoma, Hepatocellular/pathology , Mice , Liver Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Disease Models, Animal , Mice, Transgenic , Mice, Inbred C57BL , Humans
4.
Gene ; 920: 148497, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38677350

ABSTRACT

BACKGROUND: Circular RNA (circRNA) is a novel functional non-coding RNA(ncRNA) that plays a role in the occurrence and development of multiple human liver diseases, including liver fibrosis (LF). LF is a reversible repair response after liver injury, and the activation of hepatic stellate cells (HSCs) is the core event. However, the regulatory mechanisms by which circRNAs induce the activation of HSCs in LF are still poorly understood. The circAno6/miR-296-3p/toll-like receptor 4 (TLR4) signaling axis that mediates the inflammatory response and causes the activation of HSCs was investigated in this study. METHODS: First, a circAno6 overexpression plasmid and small interfering RNA were transfected into cells to determine whether circAno6 can affect the function of HSCs. Second, real-time quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), western blotting (WB) and immunofluorescence (IF) were used to detect the effects of circAno6 plasmid/siRNA transfection on HSC activation indices, inflammatory markers and the circAno6/miR-296-3p/TLR4 signaling axis. The subcellular position of circAno6 was then examined by nucleo-cytoplasmic separation and fluorescence in situ hybridization (FISH). Finally, a luciferase reporter gene assay was used to identify the relationship between circAno6 and miR-296-3p as well as the relationship between miR-296-3p and TLR4. RESULTS: CircAno6 was considerably upregulated in HSCs and positively correlated with cell proliferation and alpha-smooth muscle actin (α-SMA), collagen I, NOD-likereceptorthermalproteindomainassociatedprotein 3 (NLRP3), interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) expression. Overexpression of circAno6 increased the inflammatory response and induced HSC activation, whereas interference resulted in the opposite effects. FISH experiments revealed the localization of circAno6 in the cytoplasm. Then, a double luciferase reporter assay confirmed that miR-296-3p significantly inhibited luciferase activity in the circAno6-WT and TLR4-WT groups. CONCLUSION: This study suggests that circAno6 and miR-296-3p/TLR4 may form a regulatory axis and regulate the inflammatory response, which in turn induces HSC activation. Targeting circAno6 may be a potential therapeutic strategy to treat LF.


Subject(s)
Hepatic Stellate Cells , MicroRNAs , RNA, Circular , Signal Transduction , Toll-Like Receptor 4 , Hepatic Stellate Cells/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Animals , Cell Proliferation
5.
Sci China Life Sci ; 67(7): 1502-1513, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38478297

ABSTRACT

Various SARS-CoV-2-related coronaviruses have been increasingly identified in pangolins, showing a potential threat to humans. Here we report the infectivity and pathogenicity of the SARS-CoV-2-related virus, PCoV-GX/P2V, which was isolated from a Malayan pangolin (Manis javanica). PCoV-GX/P2V could grow in human hepatoma, colorectal adenocarcinoma cells, and human primary nasal epithelial cells. It replicated more efficiently in cells expressing human angiotensin-converting enzyme 2 (hACE2) as SARS-CoV-2 did. After intranasal inoculation to the hACE2-transgenic mice, PCoV-GX/P2V not only replicated in nasal turbinate and lungs, but also caused interstitial pneumonia, characterized by infiltration of mixed inflammatory cells and multifocal alveolar hemorrhage. Existing population immunity established by SARS-CoV-2 infection and vaccination may not protect people from PCoV-GX/P2V infection. These findings further verify the hACE2 utility of PCoV-GX/P2V by in vivo experiments using authentic viruses and highlight the importance for intensive surveillance to prevent possible cross-species transmission.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Mice, Transgenic , Pangolins , SARS-CoV-2 , Animals , Humans , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/genetics , COVID-19/virology , Pangolins/virology , Mice , Virus Replication , Lung/virology , Lung/pathology , Chlorocebus aethiops , Vero Cells
6.
J Am Chem Soc ; 146(13): 9272-9284, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38517743

ABSTRACT

Metal halide perovskites (MHPs) have garnered significant attention due to their distinctive optical and electronic properties, coupled with excellent processability. However, the thermal characteristics of these materials are often overlooked, which can be harnessed to cater to diverse application scenarios. We showcase the efficacy of lowering the congruent melting temperature (Tm) of layered 2D MHPs by employing a strategy that involves the modification of flexible alkylammonium through N-methylation and I-substitution. Structural-property analysis reveals that the N-methylation and I-substitution play pivotal roles in reducing hydrogen bond interactions between the organic components and inorganic parts, lowering the rotational symmetry number of the cation and restricting the residual motion of the cations. Additional I···I interactions enhance intermolecular interactions and lead to improved molten stability, as evidenced by a higher viscosity. The 2D MHPs discussed in this study exhibit low Tm and wide melt-processable windows, e.g., (DMIPA)2PbI4 showcasing a low Tm of 98 °C and large melt-processable window of 145 °C. The efficacy of the strategy was further validated when applied to bromine-substituted 2D MHPs. Lowering the Tm and enhancing the molten stability of the MHPs hold great promise for various applications, including glass formation, preparation of high-quality films for photodetection, and fabrication of flexible devices.

7.
J Am Chem Soc ; 146(9): 6336-6344, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38381858

ABSTRACT

Actuating materials convert different forms of energy into mechanical responses. To satisfy various application scenarios, they are desired to have rich categories, novel functionalities, clear structure-property relationships, fast responses, and, in particular, giant and reversible shape changes. Herein, we report a phase transition-driven ferroelectric crystal, (rac-3-HOPD)PbI3 (3-HOPD = 3-hydroxypiperidine cation), showing intriguingly large and anisotropic room-temperature actuating behaviors. The crystal consists of rigid one-dimensional [PbI3] anionic chains running along the a-axis and discrete disk-like cations loosely wrapping around the chains, leaving room for anisotropic shape changes in both the b- and c-axes. The shape change is switched by a ferroelectric phase transition occurring at around room temperature (294 K), driven by the exceptionally synergistic order-disorder and displacive phase transition. The rotation of the cations exerts internal pressure on the stacking structure to trigger an exceptionally large displacement of the inorganic chains, corresponding to a crystal lattice transformation with length changes of +24.6% and -17.5% along the b- and c-axis, respectively. Single crystal-based prototype devices of circuit switches and elevators have been fabricated by exploiting the unconventional negative temperature-dependent actuating behaviors. This work provides a new model for the development of multifunctional mechanically responsive materials.

8.
Nat Commun ; 15(1): 1464, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368439

ABSTRACT

Tuning phase transition temperature is one of the central issues in phase transition materials. Herein, we report a case study of using enantiomer fraction engineering as a promising strategy to tune the Curie temperature (TC) and related properties of ferroelectrics. A series of metal-halide perovskite ferroelectrics (S-3AMP)x(R-3AMP)1-xPbBr4 was synthesized where 3AMP is the 3-(aminomethyl)piperidine divalent cation and enantiomer fraction x varies between 0 and 1 (0 and 1 = enantiomers; 0.5 = racemate). With the change of the enantiomer fraction, the TC, second-harmonic generation intensity, degree of circular polarization of photoluminescence, and photoluminescence intensity of the materials have been tuned. Particularly, when x = 0.70 - 1, a continuously linear tuning of the TC is achieved, showing a tunable temperature range of about 73 K. This strategy provides an effective means and insights for regulating the phase transition temperature and chiroptical properties of functional materials.

9.
Genomics ; 116(2): 110800, 2024 03.
Article in English | MEDLINE | ID: mdl-38286349

ABSTRACT

BACKGROUND: Cellular senescence is associated with a dysregulated inflammatory response, which is an important driver of the development of liver fibrosis (LF). This study aimed to investigate the effect of cellular senescence on LF and identify potential key biomarkers through bioinformatics analysis combined with validation experiments in vivo and in vitro. METHODS: The Gene Expression Omnibus (GEO) database and GeneCards database were used to download the LF dataset and the aging-related gene set, respectively. Functional enrichment analysis of differential genes was then performed using GO and KEGG. Hub genes were further screened using Cytoscape's cytoHubba. Diagnostic values for hub genes were evaluated with a receiver operating characteristic (ROC) curve. Next, CIBERSORTx was used to estimate immune cell types and ratios. Finally, in vivo and in vitro experiments validated the results of the bioinformatics analysis. Moreover, molecular docking was used to simulate drug-gene interactions. RESULTS: A total of 44 aging-related differentially expressed genes (AgDEGs) were identified, and enrichment analysis showed that these genes were mainly enriched in inflammatory and immune responses. PPI network analysis identified 6 hub AgDEGs (STAT3, TNF, MMP9, CD44, TGFB1, and TIMP1), and ROC analysis showed that they all have good diagnostic value. Immune infiltration suggested that hub AgDEGs were significantly associated with M1 macrophages or other immune cells. Notably, STAT3 was positively correlated with α-SMA, COL1A1, IL-6 and IL-1ß, and was mainly expressed in hepatocytes (HCs). Validation experiments showed that STAT3 expression was upregulated and cellular senescence was increased in LF mice. A co-culture system of HCs and hepatic stellate cells (HSCs) further revealed that inhibiting STAT3 reduced HCs senescence and suppressed HSCs activation. In addition, molecular docking revealed that STAT3 was a potential drug therapy target. CONCLUSIONS: STAT3 may be involved in HCs senescence and promote HSCs activation, which in turn leads to the development of LF. Our findings suggest that STAT3 could be a potential biomarker for LF.


Subject(s)
Aging , Cellular Senescence , Animals , Mice , Molecular Docking Simulation , Biomarkers , Computational Biology
10.
Mol Biol Rep ; 51(1): 149, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236359

ABSTRACT

BACKGROUND: N6-methyladenosine (m6A) modification controls the stability, splicing, and translation of mRNA, which is important in the development of illnesses. Wilson's disease (WD) is an autosomal recessive liver copper metabolic disorder that causes liver fibrosis. The role of m6A methylation in WD-induced liver fibrosis development is still unclear. Thus, the goal of this study was to examine the scope of m6A methylation and further explore the potential targets related to WD-induced liver fibrosis. RESULTS: A total of 1930 significantly different m6A peaks were found on 1737 mRNAs, of which 993 were hypermethylated and 744 were hypomethylated when comparing normal and WD-induced liver fibrosis mice (n = 3). In parallel, 1261 differentially expressed mRNAs, comprising 557 upregulated and 704 downregulated mRNAs, were found. Overall, 114 mRNAs with significant changes in m6A levels and RNA expression were identified via joint analysis. Then, through PPI network construction and functional enrichment analysis, 12 hub genes were identified, these genes were mainly enriched in the inflammatory response and immunomodulation, and they are associated with immune cell infiltration. CONCLUSIONS: The significant difference in the amount of mRNA m6A modifications indicates that m6A modification is involved in the progression of WD-induced liver fibrosis, and theidentified hub genes are involved in inflammation and immune infiltration. These results may provide insights for subsequent studies on potential regulatory mechanisms.


Subject(s)
Gene Expression Profiling , Hepatolenticular Degeneration , Animals , Mice , Transcriptome/genetics , Liver Cirrhosis/genetics , Adenosine , RNA, Messenger/genetics
11.
Chemistry ; 30(8): e202303415, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37994293

ABSTRACT

Hybrid metal halides (HMHs) based phase transition materials have received widespread attention due to their excellent performance and potential applications in energy harvesting, optoelectronics, ferroics, and actuators. Nevertheless, effectively regulating the properties of phase transitions is still a thorny problem. In this work, two chiral lead-free HMHs (R-3FP)2 SbCl5 (1; 3FP=3-fluoropyrrolidinium) and (R-3FP)2 SbBr5 (2) were synthesized. By replacing the halide ions in the inorganic skeleton, the phase transition temperature of 2 changes with an increase of about 20 K, compared with 1. Meanwhile, both compounds display reversible dielectric switching properties. Through crystal structure analysis and Hirshfeld surface analysis, their phase transitions are ascribed to the disorder of the cations and deformation of the inorganic chains.

12.
Article in English | WPRIM (Western Pacific) | ID: wpr-1045096

ABSTRACT

Objectives@#This study aimed to present the Asia-Pacific consensus on long-term and sequential therapy for osteoporosis, offering evidence-based recommendations for the effective management of this chronic condition.The primary focus is on achieving optimal fracture prevention through a comprehensive, individualized approach. @*Methods@#A panel of experts convened to develop consensus statements by synthesizing the current literature and leveraging clinical expertise. The review encompassed long-term anti-osteoporosis medication goals, first-line treatments for individuals at very high fracture risk, and the strategic integration of anabolic and anti resorptive agents in sequential therapy approaches. @*Results@#The panelists reached a consensus on 12 statements. Key recommendations included advocating for anabolic agents as the first-line treatment for individuals at very high fracture risk and transitioning to anti resorptive agents following the completion of anabolic therapy. Anabolic therapy remains an option for in dividuals experiencing new fractures or persistent high fracture risk despite antiresorptive treatment. In cases of inadequate response, the consensus recommended considering a switch to more potent medications. The consensus also addressed the management of medication-related complications, proposing alternatives instead of discontinuation of treatment. @*Conclusions@#This consensus provides a comprehensive, cost-effective strategy for fracture prevention with an emphasis on shared decision-making and the incorporation of country-specific case management systems, such as fracture liaison services. It serves as a valuable guide for healthcare professionals in the Asia-Pacific region, contributing to the ongoing evolution of osteoporosis management.

13.
Int Urol Nephrol ; 56(5): 1617-1625, 2024 May.
Article in English | MEDLINE | ID: mdl-38141102

ABSTRACT

OBJECTIVE: To explore the relationship between the residual glomerular filtration rate (GFR) on the operated side and the GFR on the contralateral side following partial nephrectomy (PN) in patients with localized renal cell carcinoma (RCC). MATERIALS AND METHODS: Following institutional review board approval, we conducted a retrospective analysis of clinical records from May 2018 to July 2023, involving 118 patients who underwent partial nephrectomy for unilateral localized kidney tumors (T1-T2). Glomerular filtration rate data were assessed using single photon emission computed tomography (SPECT)/computed tomography imaging [using 9mTc-DTPA (diethylenetriaminepentaacetic acid) renal dynamic imaging]. The independent determinants of postoperative renal function or renal function change were determined using linear regression analysis. In addition, the patient's demographic, clinical, and nephrometry characteristics were collected. RESULTS: A total of 58 patients were finally enrolled. The preoperative and postoperative GFR of bilateral kidneys showed a significant positive correlation. Postoperative GFR of the operated kidney was the independent predictor of GFR of contralateral kidney (p = 0.001). Tumor diameter (p = 0.036), age (p = 0.005), and postoperative GFR of the contralateral kidney (p = 0.001) were all independent predictors of postoperative GFR of the operated kidney. ΔGFR1 was the independent predictor of ΔGFR2. Results showed that a more pronounced postoperative decline in GFR on the operated side corresponded to a weaker compensatory capacity of the contralateral-side kidney. CONCLUSIONS: During the course of the surgical procedure, the active endeavor to safeguard the renal function of the operated kidney side holds paramount importance, which yields positive outcomes for postoperative kidney function on the contralateral side, consequently contributing to the overall preservation of renal function.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/surgery , Glomerular Filtration Rate , Retrospective Studies , Kidney/pathology , Kidney Neoplasms/pathology , Nephrectomy/adverse effects , Nephrectomy/methods
15.
Genomics ; 115(6): 110738, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37918454

ABSTRACT

BACKGROUND: Liver fibrosis (LF) is a kind of progressive liver injury reaction. The goal of this study was to achieve a more detailed understanding of the molecular changes in response to CCl4-induced LF through the identification of a differentially expressed liver transcriptomic and proteomic. RESULTS: A total of 1224 differentially expressed genes (DEGs) and 302 differentially expressed proteins (DEPs) were significantly identified at the transcriptomic and proteomic level, respectively, and 69 genes (hereafter "cor-DEGs-DEPs" genes) were detected at both levels. Pathway enrichment analysis showed that these cor-DEGs-DEPs genes were significantly enriched in 133 pathways. Importantly, among the cor-DEGs-DEPs genes, Gstm1, Gstm3, Ephx1 and Gstp1 were shown to be associated with metabolic pathways, and confirmed by RT-qPCR and parallel reaction monitoring (PRM) verification. CONCLUSIONS: Through the combined analysis of transcriptomic and proteomic data, this study provides valuable insights into the potential mechanism of the pathogenesis of LF, and lays a theoretical foundation for the further development of targeted therapy for LF.


Subject(s)
Gene Expression Profiling , Proteomics , Animals , Mice , Transcriptome , Liver Cirrhosis/genetics
16.
Biochem Genet ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37856039

ABSTRACT

Alzheimer's disease (AD) is an extremely prevalent neurodegenerative disease. Long noncoding RNAs (lncRNAs) play pivotal roles in the regulation of AD. However, the function of most lncRNAs in AD remains to be elucidated. In this study, the effects of lncRNA ENST00000440246.1 on the biological characteristics of AD were explored. Differentially expressed lncRNAs in AD were identified through bioinformatics analysis and peripheral blood from thirty AD patients was collected to verify the expression of these lncRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). The correlations between lncRNAs and the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment (MoCA) were assessed by Pearson's correlation analysis. Immunofluorescence (IF), Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted to evaluate the biological effect of ENST00000440246.1 and protein phosphatase 2 A (PP2A) in SK-N-SH cells. Gene expression at the protein and mRNA levels was analyzed by Western blotting and RT-qPCR. The interaction between PP2A and ENST00000440246.1 was confirmed by IntaRNA and RNA pulldown assays. ENST00000440246.1 was upregulated and significantly negatively correlated with the MMSE and MoCA scores and the overexpression of ENST00000440246.1 inhibited cell proliferation and facilitated apoptosis and Aß expression in SK-N-SH cells. Mechanistically, ENST00000440246.1 targeted PP2A and regulated AD-related gene expression. The silencing of ENST00000440246.1 had the opposite effect. Furthermore, PP2A overexpression reversed the influence of ENST00000440246.1 overexpression in SK-N-SH cells. In conclusion, ENST00000440246.1 could promote AD progression by targeting PP2A, which indicates that ENST00000440246.1 has the potential to be a diagnostic target in AD.

17.
Cell Death Dis ; 14(8): 508, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37550282

ABSTRACT

Cervical cancer is one of the leading causes of cancer death in women. Mitochondrial-mediated ferroptosis (MMF) is a recently discovered form of cancer cell death. However, the role and the underlying mechanism of MMF in cervical cancer remain elusive. Here, using an unbiased screening for mitochondrial transmembrane candidates, we identified mitochondrial carrier 1 (MTCH1) as a central mediator of MMF in cervical cancers. MTCH1-deficiency disrupted mitochondrial oxidative phosphorylation while elevated mitochondrial reactive oxygen species (ROS) by decreasing NAD+ levels. This mitochondrial autonomous event initiated a mitochondria-to-nucleus retrograde signaling involving reduced FoxO1 nuclear translocation and subsequently downregulation of the transcription and activity of a key anti-ferroptosis enzyme glutathione peroxidase 4 (GPX4), thereby elevating ROS and ultimately triggering ferroptosis. Strikingly, targeting MTCH1 in combination with Sorafenib effectively and synergistically inhibited the growth of cervical cancer in a nude mouse xenograft model by actively inducing ferroptosis. In conclusion, these findings enriched our understanding of the mechanisms of MMF in which MTCH1 governed ferroptosis though retrograde signaling to FoxO1-GPX4 axis, and provided a potential therapeutic target for treating cervical cancer.


Subject(s)
Ferroptosis , Uterine Cervical Neoplasms , Female , Mice , Animals , Humans , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Reactive Oxygen Species/metabolism , Cell Death/physiology , Membrane Proteins/pharmacology , Mitochondrial Proteins
18.
Funct Integr Genomics ; 23(3): 267, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37548859

ABSTRACT

N4-acetylcytidine (ac4C), a significant modified nucleoside, participates in the development of many diseases. Messenger RNAs (mRNAs) contain most of the information of the genome and are the molecules that transmit information from genes to proteins. Alzheimer's disease (AD) is a progressive neurodegenerative disease in which fibrillar amyloid plaques are present. However, it remains unknown how mRNA ac4C modification affects the development of AD. In the current study, ac4C-modified mRNAs were comprehensively analyzed in AD mice by ac4C-RIP-seq and RNA-seq. Next, a protein-protein interaction (PPI) network was constructed to examine the relationships between the genes with differential ac4C modification levels and their RNA expression levels. The differentially expressed genes (DEGs) acquired above were subjected to Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to further analyze the molecular mechanisms in AD. In total, 3312 significant ac4C peaks were found on 2512 mRNAs, 1241 of which were hyperacetylated and 1271 of which were hypoacetylated. In addition, 956 mRNAs with differential expression were found, including 520 upregulated mRNAs and 436 downregulated mRNAs. Overall, 134 mRNAs with simultaneous changes at the ac4C levels as well as RNA expression levels were identified via joint analysis. Then, through PPI network construction and functional enrichment analysis, 37 key mRNAs were screened, which were predominantly enriched in GABAergic synapses and the PI3K/AKT signaling pathway. The significant difference in the abundance of mRNA ac4C modification indicates that this modification is associated with AD progression, which may provide insight for more investigations of the potential mechanisms.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Mice, Transgenic , RNA, Messenger/genetics , Phosphatidylinositol 3-Kinases/genetics , Cerebral Cortex/metabolism , High-Throughput Nucleotide Sequencing
19.
Inorg Chem ; 62(32): 12634-12638, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37534962

ABSTRACT

A two-dimensional (2D) organic-inorganic hybrid perovskite (OIHP) material with out-of-plane ferroelectricity is the key to the miniaturization of vertical-sandwich-type ferroelectric optoelectronic devices. However, 2D OIHP ferroelectrics with out-of-plane polarization are still scarce, and effective design strategies are lacking. Herein, we report a novel 2D Dion-Jacobson perovskite ferroelectric semiconductor synthesized by a rigid-to-flexible cationic tailoring strategy, achieving an out-of-plane polarization of 1.7 µC/cm2 and high photoresponse. Integrating out-of-plane ferroelectricity with excellent photoelectric properties affords a promising platform to investigate ferroelectricity-related effects in vertical optoelectronic devices.

20.
Front Oncol ; 13: 1143401, 2023.
Article in English | MEDLINE | ID: mdl-37350940

ABSTRACT

Purpose: Oral mucositis is a common side effect of concurrent chemoradiotherapy (CCRT). This study aimed to determine whether cognitive behavioral therapy (CBT) could help prevent oral mucositis during chemoradiation therapy for locoregional advanced nasopharyngeal carcinoma (LA-NPC). Methods and materials: Between July 15, 2020, and January 31, 2022, a randomized controlled phase II trial was conducted. Eligible patients (N=282, 18-70 years old) with pathologically diagnosed LA-NPC were randomly assigned to receive CBT or treatment as usual (TAU) during CCRT (computer-block randomization, 1:1). The primary endpoints were the incidence and latency of oral mucositis. Results: The incidence of oral mucositis was significantly lower in the CBT group (84.8%; 95% confidence interval [CI], 78.7%-90.9%) than in the TAU group (98.6%; 95% CI, 96.6%-100%; P<0.001). The median latency period was 26 days and 15 days in the CBT and TAU groups, respectively (hazard ratio, 0.16; 95% CI, 0.12-0.22; P<0.001). CBT significantly reduced ≥ grade 3 oral mucositis (71.9% vs. 22.5%, P<0.001), dry mouth (10.8% vs. 3.7%, P=0.021), dysphagia (18% vs. 5.1%, P=0.001), and oral pain (10% vs. 3.6%, P=0.034) compared with TAU. Patients receiving CBT and TAU during CCRT had similar short-term response rates. Conclusions: CBT reduced the occurrence, latency, and severity of oral mucositis in patients with LA-NPC during CCRT.

SELECTION OF CITATIONS
SEARCH DETAIL