Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.843
Filter
1.
J Med Chem ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989847

ABSTRACT

Despite being a highly sought-after therapeutic target for human malignancies, myelocytomatosis viral oncogene homologue (MYC) has been considered intractable due to its intrinsically disordered nature, making the discovery of in vivo effective inhibitors that directly block its function challenging. Herein, we report structurally novel alkynyl-substituted phenylpyrazole derivatives directly perturbing MYC function. Among them, compound 37 exhibited superior antiproliferative activities to those of MYCi975 against multiple malignant cell lines. It induced dose-dependent MYC degradation in cells with degradation observed at the concentration as low as 1.0 µM. Meanwhile, its direct suppression of MYC function was confirmed by the capability to inhibit the binding of MYC/MYC-associated protein X (MAX) heterodimer to DNA consensus sequence, induce MYC thermal instability, and disturb MYC/MAX interaction. Moreover, 37 demonstrated enhanced therapeutic efficacy over MYCi975 in a mouse allograft model of prostate cancer. Overall, 37 deserves further development for exploring MYC-targeting cancer therapeutics.

2.
Mil Med Res ; 11(1): 46, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992778

ABSTRACT

BACKGROUND: Subarachnoid hemorrhage (SAH) is a subtype of hemorrhagic stroke characterized by high mortality and low rates of full recovery. This study aimed to investigate the epidemiological characteristics of SAH between 1990 and 2021. METHODS: Data on SAH incidence, mortality, and disability-adjusted life-years (DALYs) from 1990 to 2021 were obtained from the Global Burden of Disease Study (GBD) 2021. Estimated annual percentage changes (EAPCs) were calculated to evaluate changes in the age-standardized rate (ASR) of incidence and mortality, as well as trends in SAH burden. The relationship between disease burden and sociodemographic index (SDI) was also analyzed. RESULTS: In 2021, the incidence of SAH was found to be 37.09% higher than that in 1990; however, the age-standardized incidence rates (ASIRs) showed a decreased [EAPC: -1.52; 95% uncertainty interval (UI) -1.66 to -1.37]. Furthermore, both the number and rates of deaths and DALYs decreased over time. It was observed that females had lower rates compared to males. Among all regions, the high-income Asia Pacific region exhibited the highest ASIR (14.09/100,000; 95% UI 12.30/100,000 - 16.39/100,000) in 2021, with an EPAC for ASIR < 0 indicating decreasing trend over time for SAH ASIR. Oceania recorded the highest age-standardized mortality rates (ASMRs) and age-standardized DALYs rates among all regions in 2021 at values of respectively 8.61 (95% UI 6.03 - 11.95) and 285.62 (95% UI 209.42 - 379.65). The burden associated with SAH primarily affected individuals aged between 50 - 69 years old. Metabolic risks particularly elevated systolic blood pressure were identified as the main risk factors contributing towards increased disease burden associated with SAH when compared against environmental or occupational behavioral risks evaluated within the GBD framework. CONCLUSIONS: The burden of SAH varies by gender, age group, and geographical region. Although the ASRs have shown a decline over time, the burden of SAH remains significant, especially in regions with middle and low-middle SDI levels. High systolic blood pressure stands out as a key risk factor for SAH. More specific supportive measures are necessary to alleviate the global burden of SAH.


Subject(s)
Global Burden of Disease , Subarachnoid Hemorrhage , Humans , Subarachnoid Hemorrhage/epidemiology , Male , Female , Incidence , Middle Aged , Aged , Adult , Global Burden of Disease/trends , Disability-Adjusted Life Years/trends , Global Health/statistics & numerical data , Aged, 80 and over
3.
World J Clin Cases ; 12(19): 3791-3799, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994323

ABSTRACT

BACKGROUND: The incidence and mortality of lung cancer have increased annually. Accurate diagnosis can help improve therapeutic efficacy of interventions and prognosis. Percutaneous lung biopsy is a reliable method for the clinical diagnosis of lung cancer. Ultrasound-guided percutaneous lung biopsy technology has been widely promoted and applied in recent years. AIM: To investigate the diagnostic value of contrast-enhanced ultrasound (CEUS)-guided percutaneous biopsy in peripheral pulmonary lesions. METHODS: We retrospectively collected data on 237 patients with peripheral thoracic focal lesions who underwent puncture biopsy at Wuxi People's Hospital. The patients were randomly divided into two groups: The CEUS-guided before lesion puncture group (contrast group) and conventional ultrasound-guided group (control group). Analyze the diagnostic efficacy of the puncture biopsy, impact of tumor size, and number of puncture needles and complications were analyzed and compared between the two groups. RESULTS: Accurate pathological results were obtained for 92.83% (220/237) of peripheral lung lesions during the first biopsy, with an accuracy rate of 95.8% (113/118) in the contrast group and 89.9% (107/119) in the control group. The difference in the area under the curve (AUC) between the contrast and the control groups was not statistically significant (0.952 vs 0.902, respectively; P > 0.05). However, when the lesion diameter ≥ 5 cm, the diagnostic AUC of the contrast group was higher than that of the control group (0.952 vs 0.902, respectively; P < 0.05). In addition, the average number of puncture needles in the contrast group was lower than that in the control group (2.58 ± 0.53 vs 2.90 ± 0.56, respectively; P < 0.05). CONCLUSION: CEUS guidance can enhance the efficiency of puncture biopsy of peripheral pulmonary lesions, especially for lesions with a diameter ≥ 5 cm. Therefore, CEUS guidance has high clinical diagnostic value in puncture biopsy of peripheral focal lung lesions.

4.
Arch Virol ; 169(8): 164, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990242

ABSTRACT

Upregulation of ADAMTS-4 has been reported to have an important role in lung injury, and ADAMTS-4 expression is regulated by miR-126a-5p in abdominal aortic aneurysms. The aim of this study was to investigate whether miR-126a-5p/ADAMTS-4 plays a role in influenza-virus-induced lung injury. Lung fibroblasts were infected with H1N1 influenza virus to detect changes in miR-126a-5p and ADAMTS-4 expression, and cell viability was measured by CCK-8 assay. Inflammatory factors and matrix protease levels were examined using ELISA kits, and cell apoptosis was assessed by measuring the levels of apoptosis-related proteins. A dual luciferase assay was used to verify the regulatory relationship between miR-126a-5p and ADAMTS-4. H1N1 influenza virus reduced fibroblast viability, inhibited miR-126a-5p expression, and promoted ADAMTS-4 expression. Overexpression of miR-126a-5p attenuated the cellular inflammatory response, apoptosis, matrix protease secretion, and virus replication. Luciferase reporter assays revealed that miR-126a-5p inhibited ADAMTS-4 expression by targeting ADAMTS-4 mRNA. Further experiments showed that overexpression of ADAMTS-4 significantly reversed the inhibitory effects of miR-126a-5p on fibroblast inflammation, apoptosis, matrix protease secretion, and virus replication. Upregulation of miR-126a-5p inhibits H1N1-induced apoptosis, inflammatory factors, and matrix protease secretion, as well as virus replication in lung fibroblasts.


Subject(s)
ADAMTS4 Protein , Apoptosis , Fibroblasts , Inflammation , Influenza A Virus, H1N1 Subtype , Lung , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Fibroblasts/virology , Fibroblasts/metabolism , Humans , Lung/virology , Lung/pathology , ADAMTS4 Protein/genetics , ADAMTS4 Protein/metabolism , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/physiology , Inflammation/genetics , Cell Survival , Virus Replication , Influenza, Human/virology , Influenza, Human/genetics , Influenza, Human/metabolism , Cell Line
5.
Heliyon ; 10(12): e32293, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975191

ABSTRACT

Backgrounds: In order to detect early gastric cancer (EGC), this research sought to assess the diagnostic utility of magnifying endoscopy (ME) as well as the significance of mucin phenotype and microvessel features. Methods: 402 individuals with an EGC diagnosis underwent endoscopic submucosal dissection (ESD) at the Department of ME between 2012 and 2020. After adjusting for image distortion, high-magnification endoscopic pictures were taken and examined to find microvessels in the area of interest. The microvessel density was measured as counts per square millimeter (counts/mm2) after segmentation, and the vascular bed's size was computed as a percentage of the area of interest. To identify certain properties of the microvessels, such as end-points, crossing points, branching sites, and connection points, further processing was done using skeletonized pixels. Results: According to the research, undifferentiated tumors often lacked the MS pattern and showed an oval and tubular microsurface (MS) pattern, but differentiated EGC tumors usually lacked the MS pattern and presented a corkscrew MV pattern. Submucosal invasion was shown to be more strongly associated with the destructive MS pattern in differentiated tumors as opposed to undifferentiated tumors. While lesions with a corkscrew MV pattern and an antrum or body MS pattern revealed greater MUC5AC expression, lesions with a loop MV pattern indicated higher MUC2 expression. Furthermore, CD10 expression was higher in lesions with a papillary pattern and an antrum or body MS pattern. Conclusion: These results imply that evaluating mucin phenotype and microvessel features in conjunction with magnifying endoscopy (ME) may be a useful diagnostic strategy for early gastric cancer (EGC) detection. Nevertheless, further investigation is required to confirm these findings and identify the best course of action for EGC diagnosis.

6.
World J Gastrointest Surg ; 16(6): 1933-1938, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983322

ABSTRACT

BACKGROUND: The combination of magnetic compression anastomosis (MCA) and endoscopy has been used to treat biliary stricture after liver transplantation. However, its use for the treatment of complex biliary obstruction after major abdominal trauma has not been reported. This case report describes the successful use of MCA for the treatment of biliary obstruction resulting from major abdominal trauma. CASE SUMMARY: A 23-year-old man underwent major abdominal surgery (repair of liver rupture, right half colon resection, and ileostomy) following a car accident one year ago. The abdominal drainage tube, positioned at the Winslow foramen, was draining approximately 600-800 mL of bile per day. During the two endoscopic retrograde cholangiopancreatography procedures, the guide wire was unable to enter the common bile duct, which prevented placement of a biliary stent. MCA combined with endoscopy was used to successfully achieve magnetic anastomosis of the peritoneal sinus tract and duodenum, and then a choledochoduodenal stent was placed. Finally, the external biliary drainage tube was removed. The patient achieved internal biliary drainage leading to the removal of the external biliary drainage tube, which improved the quality of life. CONCLUSION: Magnetic compression technique can be used for the treatment of complex biliary obstruction with minimal operative trauma.

7.
World J Gastrointest Surg ; 16(6): 1926-1932, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983326

ABSTRACT

BACKGROUND: The treatment of postoperative anastomotic stenosis after excision of rectal cancer is challenging. Endoscopic balloon dilation and radial incision are not effective in all patients. We present a new endoscopy-assisted magnetic compression technique (MCT) for the treatment of rectal anastomotic stenosis. We successfully applied this MCT to a patient who developed an anastomotic stricture after radical resection of rectal cancer. CASE SUMMARY: A 50-year-old man had undergone laparoscopic radical rectal cancer surgery at a local hospital 5 months ago. A colonoscopy performed 2 months ago indicated that the rectal anastomosis was narrow due to which ileostomy closure could not be performed. The patient came to the Magnetic Surgery Clinic of the First Affiliated Hospital of Xi'an Jiaotong University after learning that we had successfully treated patients with colorectal stenosis using MCT. We performed endoscopy-assisted magnetic compression surgery for rectal stenosis. The magnets were removed 16 d later. A follow-up colonoscopy performed after 4 months showed good anastomotic patency, following which, ileostomy closure surgery was performed. CONCLUSION: MCT is a simple, non-invasive technique for the treatment of anastomotic stricture after radical resection of rectal cancer. The technique can be widely used in clinical settings.

8.
Sci Rep ; 14(1): 15667, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977741

ABSTRACT

The microreactor with two types of immobilized enzymes, exhibiting excellent orthogonal performance, represents an effective approach to counteract the reduced digestion efficiency resulting from the absence of a single enzyme cleavage site, thereby impacting protein identification. In this study, we developed a hydrophilic dual-enzyme microreactor characterized by rapid mass transfer and superior enzymatic activity. Initially, we selected KIT-6 molecular sieve as the carrier for the dual-IMER due to its three-dimensional network pore structure. Modification involved co-deposition of polyethyleneimine (PEI) and acrylamide (AM) as amine donors, along with dopamine to enhance material hydrophilicity. Remaining amino and double bond functional groups facilitated stepwise immobilization of trypsin and Glu-C. Digestion times for bovine serum albumin (BSA) and bovine hemoglobin (BHb) on the dual-IMER were significantly reduced compared to solution-based digestion (1 min vs. 36 h), resulting in improved sequence coverage (91.30% vs. 82.7% for BSA; 90.24% vs. 89.20% for BHb). Additionally, the dual-IMER demonstrated excellent durability, retaining 96.08% relative activity after 29 reuse cycles. Enhanced protein digestion efficiency can be attributed to several factors: (1) KIT-6's large specific surface area, enabling higher enzyme loading capacity; (2) Its three-dimensional network pore structure, facilitating faster mass transfer and substance diffusion; (3) Orthogonality of trypsin and Glu-C enzyme cleavage sites; (4) The spatial effect introduced by the chain structure of PEI and glutaraldehyde's spacing arm, reducing spatial hindrance and enhancing enzyme-substrate interactions; (5) Mild and stable enzyme immobilization. The KIT-6-based dual-IMER offers a promising technical tool for protein digestion, while the PDA/PEI/AM-KIT-6 platform holds potential for immobilizing other proteins or active substances.


Subject(s)
Acrylamide , Dopamine , Enzymes, Immobilized , Polyethyleneimine , Serum Albumin, Bovine , Trypsin , Polyethyleneimine/chemistry , Dopamine/chemistry , Dopamine/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Acrylamide/chemistry , Trypsin/chemistry , Trypsin/metabolism , Animals , Cattle , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Porosity , Hydrophobic and Hydrophilic Interactions , Hemoglobins/chemistry , Hemoglobins/metabolism , Proteolysis
9.
J Orthop Translat ; 47: 74-86, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007038

ABSTRACT

Backgrounds: The functional recovery after peripheral nerve injury remains unsatisfactory. This study aims to perform a comprehensive evaluation of the efficacy of Fasudil Hydrochloride at treating the sciatic nerve transection injury in rats and the mechanism involved. Materials and methods: In animal experiments, 75 Sprague Dawley rats that underwent transection and repair of the right sciatic nerve were divided into a control, Fasudil, and Fas + LY group, receiving daily intraperitoneal injection of saline, Fasudil Hydrochloride (10 mg/kg), and Fasudil Hydrochloride plus LY294002 (5 mg/kg), respectively. At day 3 after surgery, the expression of ROCK2, p-PI3K, and p-AKT in L4-5 DRG and the lumbosacral enlargement was determined using Western blotting. At day 7 and 14, axon density in the distal stump was evaluated with immunostaining using the anti-Neurofilament-200 antibody. At day 30, retrograde tracing by injecting Fluoro-gold in the distal stump was performed. Three months after surgery, remyelination was analyzed with immostaining using the anti-MPZ antibody and the transmission electron microscope; Moreover, Motion-Evoked Potential, and recovery of sensorimotor functions was evaluated with a neuromonitor, Footprint, Hot Plate and Von Frey Filaments, respectively. Moveover, the Gastrocnemius muscles were weighed, and then underwent H&E staining, and staining of the neuromuscular junction using α-Bungarotoxin to evaluate the extent of atrophy and degeneration of the endplates in the Gastrocnemius. In vitro, spinal motor neurons (SMNs) and dorsal root ganglia (DRG) were cultured to examine the impact of Fasudil Hydrochloride and LY294002 on the axon outgrowth. Results: Three days after injury, the expression of ROCK2 increased significantly (P<0.01), and Fasudil application significantly increased the expression of p-PI3K and p-AKT in L4-6 DRG and the lumbosacral enlargement (P < 0.05). At day 7 and 14 after surgery, a higher axon density could be observed in the Fasudil group(P < 0.05). At day 30 after surgery, a larger number of motor and sensory neurons absorbing Fluoro-gold could be observed in the Fasudil group (P < 0.01) Three months after surgery, a greater thickness of myelin sheath could be observed in the Fasudil group (P < 0.05). The electrophysiological test showed that a larger amplitude of motion-evoked potential could be triggered in the Fasudil group (P < 0.01). Behavioral tests showed that a higher sciatic function index and a lower threshold for reacting to heat and mechanical stimuli could be measured in the Fasudil group. (P < 0.01). The wet weight ratio of the Gastrocnemius muscles and the area of the cross section of its myofibrils were greater in the Fasudil group (P < 0.01), which also demonstrated a higer ratio of axon-endplate connection and a larger size of endplates (P < 0.05). And there were no significant differences for the abovementioned parameters between the control and Fas + LY groups (P>0.05). In vitro studies showed that Fasudil could significantly promote axon growth in DRG and SMNs, and increase the expression of p-PI3K and p-AKT, which could be abolished by LY294002 (P < 0.05). Conclusions: Fasudil can augment axon regeneration and remyelination, and functional recovery after sciatic nerve injury by activating the PI3K/AKT pathway. The translational potential of this article: The translation potential of this article is that we report for the first time that Fasudil Hydrochloride has a remarkable efficacy at improving axon regeneration and remyelination following a transection injury of the right sciatic nerve in rats through the ROCK/PI3K/AKT pathway, which has a translational potential to be used clinically to treat peripheral nerve injury.

10.
Neurotox Res ; 42(4): 35, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008165

ABSTRACT

This study elucidates the molecular mechanisms by which FABP3 regulates neuronal apoptosis via mitochondrial autophagy in the context of cerebral ischemia-reperfusion (I/R). Employing a transient mouse model of middle cerebral artery occlusion (MCAO) established using the filament method, brain tissue samples were procured from I/R mice. High-throughput transcriptome sequencing on the Illumina CN500 platform was performed to identify differentially expressed mRNAs. Critical genes were selected by intersecting I/R-related genes from the GeneCards database with the differentially expressed mRNAs. The in vivo mechanism was explored by infecting I/R mice with lentivirus. Brain tissue injury, infarct volume ratio in the ischemic penumbra, neurologic deficits, behavioral abilities, neuronal apoptosis, apoptotic factors, inflammatory factors, and lipid peroxidation markers were assessed using H&E staining, TTC staining, Longa scoring, rotation experiments, immunofluorescence staining, and Western blot. For in vitro validation, an OGD/R model was established using primary neuron cells. Cell viability, apoptosis rate, mitochondrial oxidative stress, morphology, autophagosome formation, membrane potential, LC3 protein levels, and colocalization of autophagosomes and mitochondria were evaluated using MTT assay, LDH release assay, flow cytometry, ROS/MDA/GSH-Px measurement, transmission electron microscopy, MitoTracker staining, JC-1 method, Western blot, and immunofluorescence staining. FABP3 was identified as a critical gene in I/R through integrated transcriptome sequencing and bioinformatics analysis. In vivo experiments revealed that FABP3 silencing mitigated brain tissue damage, reduced infarct volume ratio, improved neurologic deficits, restored behavioral abilities, and attenuated neuronal apoptosis, inflammation, and mitochondrial oxidative stress in I/R mice. In vitro experiments demonstrated that FABP3 silencing restored OGD/R cell viability, reduced neuronal apoptosis, and decreased mitochondrial oxidative stress. Moreover, FABP3 induced mitochondrial autophagy through ROS, which was inhibited by the free radical scavenger NAC. Blocking mitochondrial autophagy with sh-ATG5 lentivirus confirmed that FABP3 induces mitochondrial dysfunction and neuronal apoptosis by activating mitochondrial autophagy. In conclusion, FABP3 activates mitochondrial autophagy through ROS, leading to mitochondrial dysfunction and neuronal apoptosis, thereby promoting cerebral ischemia-reperfusion injury.


Subject(s)
Apoptosis , Autophagy , Fatty Acid Binding Protein 3 , Mitochondria , Neurons , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Apoptosis/physiology , Autophagy/physiology , Neurons/metabolism , Neurons/pathology , Mice , Mitochondria/metabolism , Male , Fatty Acid Binding Protein 3/metabolism , Fatty Acid Binding Protein 3/genetics , Mice, Inbred C57BL , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Brain Ischemia/metabolism , Brain Ischemia/pathology , Oxidative Stress/physiology
11.
Anesth Analg ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008422

ABSTRACT

BACKGROUND: Accumulated evidence suggests that brain regions that promote wakefulness also facilitate emergence from general anesthesia (GA). Glutamatergic neurons in the substantia innominata (SI) regulate motivation-related aversive, depressive, and aggressive behaviors relying on heightened arousal. Here, we hypothesize that glutamatergic neurons in the SI are also involved in the regulation of the effects of sevoflurane anesthesia. METHODS: With a combination of fiber photometry, chemogenetic and optogenetic tools, behavioral tests, and cortical electroencephalogram recordings, we investigated whether and how SI glutamatergic neurons and their projections to the lateral hypothalamus (LH) regulate sevoflurane anesthesia in adult male mice. RESULTS: Population activity of glutamatergic neurons in the SI gradually decreased upon sevoflurane-induced loss of consciousness (LOC) and slowly returned as soon as inhalation of sevoflurane discontinued before recovery of consciousness (ROC). Chemogenetic activation of SI glutamatergic neurons dampened the animals' sensitivity to sevoflurane exposure, prolonged induction time (mean ± standard deviation [SD]; 389 ± 67 seconds vs 458 ± 53 seconds; P = .047), and shortened emergence time (305 seconds, 95% confidence interval [CI], 242-369 seconds vs 207 seconds, 95% CI, 135-279 seconds; P = .004), whereas chemogenetic inhibition of these neurons facilitated sevoflurane anesthesia. Furthermore, optogenetic activation of SI glutamatergic neurons and their terminals in LH induced cortical activation and behavioral emergence from different depths of sevoflurane anesthesia. CONCLUSIONS: Our study shows that SI glutamatergic neuronal activity facilitates emergence from sevoflurane anesthesia and provides evidence for the involvement of the SI-LH glutamatergic pathway in the regulation of consciousness during GA.

12.
Article in English, Spanish | MEDLINE | ID: mdl-39009242

ABSTRACT

INTRODUCTION AND OBJECTIVES: This study aimed to retrospectively analyze the anatomical characteristics and classification of multiple coronary artery fistulas (MCAFs), and to compare the outcomes of transcatheter closure between MCAFs and single fistulas. METHODS: All patients who underwent attempts at transcatheter closure of coronary artery fistulas (CAFs) at Fuwai Hospital from 2010 to 2023 were retrospectively reviewed. Patients were categorized into single fistula and MCAFs groups, and anatomical characteristics and transcatheter closure outcomes were compared between the 2 groups. RESULTS: This retrospective study included 146 patients who underwent attempted transcatheter closure of CAFs, with a 14.38% failure rate. Among the 146 patients with CAFs, 32.19% were identified as having MCAFs, with types I, II, and III constituting 40.43%, 42.55%, and 17.02%, respectively. Unlike single fistulas, which predominantly originated from the right coronary artery and terminated in the left ventricle, MCAFs mainly had simultaneous origins from the right coronary artery and left anterior descending artery (29.79%), and predominantly drained into the pulmonary artery (70.21%), with a notable prevalence of plexus-like morphology (38.3% vs 2.02%, P < .001). The success rate of transcatheter closure was significantly lower for multiple fistulas compared with single fistula (64.29% vs 84.34%, P = .011). Multivariate regression analysis indicated that the risk of closure failure for MCAFs was 2.64 times that of single fistulas. CONCLUSIONS: MCAFs are common among CAFs and can be classified into 3 types based on the number and location of their origins and terminations. The risk of failure of transcatheter closure is significantly higher in MCAFs than in single fistulas.

13.
Phytomedicine ; 132: 155847, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38996505

ABSTRACT

BACKGROUND: Gut microbiota dysbiosis significantly contributes to progression of depression. Hypericum perforatum L. (HPL) is traditionally used in Europe for treating depression. However, its mechanism remains largely underexplored. PURPOSE: This study aims to investigate the pivotal gut microbiota species and microbial signaling metabolites associated with the antidepressant effects of HPL. METHODS: Fecal microbiota transplantation was used to assess whether HPL mitigates depression through alterations in gut microbiota. Microbiota and metabolic profiling of control, chronic restraint stress (CRS)-induced depression, and HPL-treated CRS mice were examined using 16S rRNA gene sequencing and metabolomics analysis. The influence of gut microbiota on HPL's antidepressant effects was assessed by metabolite and bacterial intervention experiments. RESULTS: HPL significantly alleviated depression symptoms in a manner dependent on gut microbiota and restored gut microbial composition by enriching Akkermansia muciniphila (AKK). Metabolomic analysis indicated that HPL regulated tryptophan metabolism, reducing kynurenine (KYN) levels derived from microbiota and increasing 5-hydroxytryptophan (5-HTP) levels. Notably, supplementation with KYN activated the NFκB-NLRP2-Caspase1-IL1ß pathway and increased proinflammatory IL1ß in the hippocampus of mice with depression. Interestingly, mono-colonization with AKK notably increased 5-hydroxytryptamine (5-HT) and decreased KYN levels, ameliorating depression symptoms through modulation of the NFκB-NLRP2-Caspase1-IL1ß pathway. CONCLUSIONS: The promising therapeutic role of HPL in treating depression is primarily attributed to its regulation of the NFκB-NLRP2-Caspase1-IL1ß pathway, specifically by targeting AKK and tryptophan metabolites.

14.
J Neurochem ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994800

ABSTRACT

Oxidative stress is one of the major culprits causing dopaminergic neuron loss in Parkinson's disease (PD). DJ-1 is a protein with multiple actions against oxidative stress, apoptosis, neuroinflammation, etc. DJ-1 expression is decreased in sporadic PD, therefore increasing DJ-1 expression might be beneficial in PD treatment. However, drugs known to upregulate DJ-1 are still lacking. In this study, we identified a novel DJ-1-elevating compound called ChemJ through luciferase assay-based high-throughput compound screening in SH-SY5Y cells and confirmed that ChemJ upregulated DJ-1 in SH-SY5Y cell line and primary cortical neurons. DJ-1 upregulation by ChemJ alleviated MPP+-induced oxidative stress. In exploring the underlying mechanisms, we found that the transcription factor CREB1 bound to DJ-1 promoter and positively regulated its expression under both unstressed and 1-methyl-4-phenylpyridinium-induced oxidative stress conditions and that ChemJ promoted DJ-1 expression via activating PKA/CREB1 pathway in SH-SY5Y cells. Our results demonstrated that ChemJ alleviated the MPP+-induced oxidative stress through a PKA/CREB1-mediated regulation of DJ-1 expression, thus offering a novel and promising avenue for PD treatment.

15.
Ann Neurol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984615

ABSTRACT

OBJECTIVE: To investigate the association between infections and disability worsening in people with multiple sclerosis (MS) treated with either B-cell depleting therapy (rituximab) or interferon-beta/glatiramer acetate (IFN/GA). METHODS: This cohort study spanned from 2000 to 2021, using data from the Swedish MS Registry linked to national health care registries, comprising 8,759 rituximab and 7,561 IFN/GA treatment episodes. The risk of hospital-treated infection was estimated using multivariable Cox models. The association between infections and increase in Expanded Disability Status Scale (EDSS) scores was assessed using a doubly robust generalized estimating equations model. Additionally, a piece-wise exponential model analyzed events of increased disability beyond defined cut-off values, controlling for relapses, and MRI activity. RESULTS: Compared with IFN/GA, rituximab displayed increased risk of both inpatient- and outpatient-treated infections (hazard ratio [HR], 2.08; 95% confidence interval [CI], 1.50-2.90 and HR, 1.37; 95% CI, 1.13-1.67, respectively). An inpatient-treated infection was associated with a 0.19-unit increase in EDSS (95% CI, 0.12-0.26). Degree of worsening was greatest for progressive MS, and under IFN/GA treatment, which unlike rituximab, was more commonly associated with MRI activity. After controlling for relapses and MRI activity, inpatient-treated infections were associated with disability worsening in people with relapsing-remitting MS treated with IFN/GA (HR, 2.01; 95% CI, 1.59-2.53), but not in those treated with rituximab. INTERPRETATION: Compared to IFN/GA, rituximab doubled the infection risk, but reduced the risk of subsequent disability worsening. Further, the risk of worsening after hospital-treated infection was greater with progressive MS than with relapsing-remitting MS. Infection risk should be considered to improve long term outcomes. ANN NEUROL 2024.

16.
Small ; : e2405148, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978436

ABSTRACT

The practical implementation of lithium-sulfur batteries is severely hindered by the rapid capacity fading due to the solubility of the intermediate lithium polysulfides (LiPSs) and the sluggish redox kinetics. Herein, high-entropy metal nitride nanocrystals (HEMN) embedded within nitrogen-doped concave porous carbon (N-CPC) polyhedra are rationally designed as a sulfur host via a facile zeolitic imidazolate framework (ZIF)-driven adsorption-nitridation process toward this challenge. The configuration of high-entropy with incorporated metal manganese (Mn) and chromium (Cr) will optimize the d-band center of active sites with more electrons occupied in antibonding orbitals, thus promoting the adsorption and catalytic conversion of LiPSs. While the concave porous carbon not only accommodates the volume change upon the cycling processes but also physically confines and exposes active sites for accelerated sulfur redox reactions. As a result, the resultant HEMN/N-CPC composites-based sulfur cathode can deliver a high specific capacity of 1274 mAh g-1 at 0.2 C and a low capacity decay rate of 0.044% after 1000 cycles at 1 C. Moreover, upon sulfur loading of 5.0 mg cm-2, the areal capacity of 5.0 mAh cm-2 can still be achieved. The present work may provide a new avenue for the design of high-performance cathodes in Li-S batteries.

17.
J Nanobiotechnology ; 22(1): 382, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951872

ABSTRACT

Reperfusion therapy is critical for saving heart muscle after myocardial infarction, but the process of restoring blood flow can itself exacerbate injury to the myocardium. This phenomenon is known as myocardial ischemia-reperfusion injury (MIRI), which includes oxidative stress, inflammation, and further cell death. microRNA-146a (miR-146a) is known to play a significant role in regulating the immune response and inflammation, and has been studied for its potential impact on the improvement of heart function after myocardial injury. However, the delivery of miR-146a to the heart in a specific and efficient manner remains a challenge as extracellular RNAs are unstable and rapidly degraded. Milk exosomes (MEs) have been proposed as ideal delivery platform for miRNA-based therapy as they can protect miRNAs from RNase degradation. In this study, the effects of miR-146a containing MEs (MEs-miR-146a) on improvement of cardiac function were examined in a rat model of MIRI. To enhance the targeting delivery of MEs-miR-146a to the site of myocardial injury, the ischemic myocardium-targeted peptide IMTP was modified onto the surfaces, and whether the modified MEs-miR-146a could exert a better therapeutic role was examined by echocardiography, myocardial injury indicators and the levels of inflammatory factors. Furthermore, the expressions of miR-146a mediated NF-κB signaling pathway-related proteins were detected by western blotting and qRT-PCR to further elucidate its mechanisms. MiR-146 mimics were successfully loaded into the MEs by electroporation at a square wave 1000 V voltage and 0.1 ms pulse duration. MEs-miR-146a can be up-taken by cardiomyocytes and protected the cells from oxygen glucose deprivation/reperfusion induced damage in vitro. Oral administration of MEs-miR-146a decreased myocardial tissue apoptosis and the expression of inflammatory factors and improved cardiac function after MIRI. The miR-146a level in myocardium tissues was significantly increased after the administration IMTP modified MEs-miR-146a, which was higher than that of the MEs-miR-146a group. In addition, intravenous injection of IMTP modified MEs-miR-146a enhanced the targeting to heart, improved cardiac function, reduced myocardial tissue apoptosis and suppressed inflammation after MIRI, which was more effective than the MEs-miR-146a treatment. Moreover, IMTP modified MEs-miR-146a reduced the protein levels of IRAK1, TRAF6 and p-p65. Therefore, IMTP modified MEs-miR-146a exerted their anti-inflammatory effect by inhibiting the IRAK1/TRAF6/NF-κB signaling pathway. Taken together, our findings suggested miR-146a containing MEs may be a promising strategy for the treatment of MIRI with better outcome after modification with ischemic myocardium-targeted peptide, which was expected to be applied in clinical practice in future.


Subject(s)
Exosomes , MicroRNAs , Myocardial Reperfusion Injury , NF-kappa B , Rats, Sprague-Dawley , Signal Transduction , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Myocardial Reperfusion Injury/metabolism , Exosomes/metabolism , NF-kappa B/metabolism , Rats , Male , Milk/chemistry , Myocardium/metabolism , Cardiotonic Agents/pharmacology , Myocytes, Cardiac/metabolism
18.
Chin Med J (Engl) ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955430

ABSTRACT

BACKGROUND: Understanding willingness to undergo pulmonary function tests (PFTs) and the factors associated with poor uptake of PFTs is crucial for improving early detection and treatment of chronic obstructive pulmonary disease (COPD). This study aimed to understand willingness to undergo PFTs among high-risk populations and identify any barriers that may contribute to low uptake of PFTs. METHODS: We collected data from participants in the "Happy Breathing Program" in China. Participants who did not follow physicians' recommendations to undergo PFTs were invited to complete a survey regarding their willingness to undergo PFTs and their reasons for not undergoing PFTs. We estimated the proportion of participants who were willing to undergo PFTs and examined the various reasons for participants to not undergo PFTs. We conducted univariable and multivariable logistic regressions to analyze the impact of individual-level factors on willingness to undergo PFTs. RESULTS: A total of 8475 participants who had completed the survey on willingness to undergo PFTs were included in this study. Out of these participants, 7660 (90.4%) were willing to undergo PFTs. Among those who were willing to undergo PFTs but actually did not, the main reasons for not doing so were geographical inaccessibility (n = 3304, 43.1%) and a lack of trust in primary healthcare institutions (n = 2809, 36.7%). Among the 815 participants who were unwilling to undergo PFTs, over half (n = 447, 54.8%) believed that they did not have health problems and would only consider PFTs when they felt unwell. In the multivariable regression, individuals who were ≤54 years old, residing in rural townships, with a secondary educational level, with medical reimbursement, still working, with occupational exposure to dust, and aware of the abbreviation "COPD" were more willing to undergo PFTs. CONCLUSIONS: Willingness to undergo PFTs was high among high-risk populations. Policymakers may consider implementing strategies such as providing financial incentives, promoting education, and establishing community-based programs to enhance the utilization of PFTs.

19.
Br J Clin Pharmacol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958172

ABSTRACT

AIMS: We explored whether esketamine anesthesia during hysteroscopic surgery can reduce intraoperative hemodynamic fluctuations and improve patient benefit. METHODS: A total of 170 patients undergoing hysteroscopic surgery were enrolled, and 151 patients were finally included in the analysis, among which 19 used vasoactive drugs during surgery. Patients were randomly assigned to either the esketamine anesthesia group (E group) or the sufentanil anesthesia group (S group). The primary outcomes were blood pressure and heart rate during the surgery. Secondary outcomes included resistance to laryngeal mask insertion, demand for propofol and remifentanil, nausea and vomiting, Richmond Agitation and Sedation Scale (RASS), dizziness and pain intensity after resuscitation, vasoactive medication treatment, hospitalization time and expenses. RESULTS: E group had a more stable heart rate, systolic blood pressure, diastolic blood pressure and mean blood pressure than the S group (p < 0.001). Patients in E group had a higher demand for propofol (p < 0.001) but better RASS scores (p < 0.001) after resuscitation. The incidence of intraoperative vasoactive medication use was higher in the S group (18.4% vs. 6.7%, p = 0.029). There were no statistically significant differences in terms of resistance to laryngeal mask insertion, remifentanil demand, time required for resuscitation, postoperative pain, dizziness, nausea or vomiting. CONCLUSIONS: Compared with sufentanil, esketamine-induced anesthesia during hysteroscopic surgery can reduce intraoperative hemodynamic fluctuations and the incidence of intraoperative vasoactive medication. Although esketamine-induced anesthesia may increase the demand for propofol during surgery, it does not affect the anesthesia recovery time and the quality of patient recovery is better.

SELECTION OF CITATIONS
SEARCH DETAIL
...