Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
mSphere ; : e0042824, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012104

ABSTRACT

Fusarium oxysporum f. sp. cubense (Foc) poses a significant threat to banana crops as a lethal fungal pathogen. The global spread of Foc underscores the formidable challenges associated with traditional management methods in combating this pathogen. This study delves into the hypovirulence-associated mycovirus in Foc. From Foc strain LA6, we isolated and characterized a novel member of the Hadakaviridae family, named Hadaka virus 1 strain LA6 (HadV1-LA6). HadV1-LA6 comprises 10 genomic RNA segments, with RNA1 to RNA7 sharing 80.9%-95.0% amino acid sequence identity with known HadV1-7n, while RNA8 to RNA10 display significantly lower identity. HadV1-LA6 demonstrates horizontal transmission capabilities in an all-or-none fashion between different Foc strains via coculturing. Phenotypic comparisons highlight that HadV1-LA6 significantly reduces the growth rates of its host fungus under cell wall stress and oxidative stress conditions. Importantly, HadV1-LA6 attenuates Foc's virulence in detached leaves and banana plants. This study represents the first introduction of a novel hypovirulence-associated Hadaka virus 1 in Foc.IMPORTANCEFusarium wilt of banana (FWB) is a severe fungal disease caused by soil-borne Fusarium oxysporum f. sp. cubense (Foc). Among various strategies, biocontrol emerges as a safe, ecologically friendly, and cost-effective approach to managing FWB. In this study, we focus on exploring the potential of a novel hypovirulent member of hadakavirid, HadV1-LA6. Previous reports suggest that HadV1 shows no apparent effect on the host. However, through phenotypic assessments, we demonstrate that HadV1-LA6 significantly impedes the growth rates of its host fungus under stress conditions. More importantly, HadV1-LA6 exhibits a remarkable capacity to attenuate Foc's virulence in detached leaves and banana plants. Furthermore, HadV1-LA6 could be horizontally transmitted between different Foc strains, presenting a promising resource for revealing the molecular mechanism of the interaction between Hadaka virus 1 and its host.

2.
Cell Surf ; 11: 100126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38827922

ABSTRACT

Cell wall biomass, Earth's most abundant natural resource, holds significant potential for sustainable biofuel production. Composed of cellulose, hemicellulose, lignin, pectin, and other polymers, the plant cell wall provides essential structural support to diverse organisms in nature. In contrast, non-plant species like insects, crustaceans, and fungi rely on chitin as their primary structural polysaccharide. The saprophytic fungus Aspergillus fumigatus has been widely recognized for its adaptability to various environmental conditions. It achieves this by secreting different cell wall biomass degradation enzymes to obtain essential nutrients. This review compiles a comprehensive collection of cell wall degradation enzymes derived from A. fumigatus, including cellulases, hemicellulases, various chitin degradation enzymes, and other polymer degradation enzymes. Notably, these enzymes exhibit biochemical characteristics such as temperature tolerance or acid adaptability, indicating their potential applications across a spectrum of industries.

3.
Plant Dis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720540

ABSTRACT

Passion fruit (Passilora edulis), known as the "king of fruit juices", is popular in southern China (Yuan et al. 2019). Stem base rot is a devastating disease of passion fruit commonly caused by several Fusarium spp. (Zakaria, 2022). In July 2022, typical symptoms of stem base rot were observed in a poorly managed "Qinmi No. 9" Golden passion fruit orchard in Jingxi (23°13'10"N, 106°5'23"E). The disease incidence had reached 40% (n=200) in the survey. Symptoms included ulceration and mutilation at the stem base, making the plants prone to breakage when pulled, wilting and drooping leaves above ground, and severe cases leading to the entire plant withering and dying. Fourteen plants with obvious symptoms were collected. Thin sections of plant tissue were cut from junction of sickness and health of stem, sterilized with ethanol and sodium hypochlorite, and placed on PDA medium at 28°C. Sixty fungal strains were obtained, 90% of which was identified as Fusarium based on morphology. 80% of Fusarium were F. oxysporum species complex (FOSC), but pathogenicity experiment showed all FOSC were weakly pathogenic. However, two severely pathogenic fungi with similar morphology but distinct from Fusarium were identified from the same plant. The representative strain C11 was selected for further study. C11 demonstrated a rapid growth rate, reaching a 90 mm diameter colony on PDA cultured at 25°C for 7 days. The colony displaced a round, flat shape with an overall light brown front, and cottony gray or light brown mycelium, while the reverse side was dark brown. Conidia production was observed as typically occurred in multiple chains after 14 days culture on OA medium, with round, oval or straight rod-like brown conidia ranging in size from 5.74-23.42×14.67-67.22, featuring 1-8 transverse septa and 0-3 mediastinum (Figure S1). For molecular identification, the internal transcribed spacer (ITS, OR616614), translation elongation factor 1-alpha (TEF, OR633298), alternaria major allergen (Alt a1, OR633294) gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH, OR633295), RNA polymerase subunit II gene (RPB2, OR633297), 18S Small subunit rDNA (SSU, OR616608) , 28S Large Subunit rDNA (LSU, OR616615), the KOG1058 gene regions (OR633296) and an approximately segment of the anonymous noncoding region (OPA10-2, OR633299) were amplified from C11 (Liu et al. 1999, Li et al. 2023, Andrew et al. 2009), and deposited in GenBank with accession number shown in the brackets. Phylogenetic trees were constructed in MEGA11 after splicing by BioEdit (Figure S3). Combining morphology and molecular analyses, C11 was identified as Alternaria gossypina (Woudenberg et al. 2015). To test the pathogenicity, the base of the seedling stem (20cm in height) of 50 healthy "Tainong No. 1" variety of purple passion fruit, which was more susceptible to stem-base rot, was puncture wound with needles, inoculated with 6 mm diameter colonies of fungi, and then wrapped in wet cotton (Ángel et al. 2018). Ten healthy seedlings inoculated with PDA were used as controls. These plants were cultured in an artificial greenhouse at 30±5℃with 80±5% humidity. After 15 days, the plants inoculated with C11 exhibited symptoms similar to those in the field, whereas the controls remained healthy. A. gossypina was reisolated from the diseased plant stems, with the morphology and GAPDH sequence consistent with the inoculated (Figure S1, S2). This is the first report of passion fruit stem rot caused by A. gossypina. This finding will aid in the prevention and control of stem rot in passion fruit.

4.
DNA Repair (Amst) ; 137: 103669, 2024 May.
Article in English | MEDLINE | ID: mdl-38507953

ABSTRACT

The SMC5/6 complex is evolutionarily conserved across all eukaryotes and plays a pivotal role in preserving genomic stability. Mutations in genes encoding SMC5/6 complex subunits have been associated with human lung disease, immunodeficiency, and chromosome breakage syndrome. Despite its critical importance, much about the SMC5/6 complex remains to be elucidated. Various evidences have suggested possible role of a subunit of the SMC5/6 complex, NSE1, in chromosome segregation and DNA repair. Current knowledge regarding the role of NSE1 is primarily derived from single-cell-based analyses in yeasts, Arabidopsis thaliana, and human cell lines. However, our understanding of its function is still limited and requires further investigation. This study delves into the role of nse-1 in Caenorhabditis elegans, revealing its involvement in meiotic recombination and DNA repair. nse-1 mutants display reduced fertility, increased male incidence, and increased sensitivity to genotoxic chemicals due to defects in meiotic chromosome segregation and DNA repair. These defects manifest as increased accumulation of RAD-51 foci, increased chromosome fragmentation, and susceptibility to MMS, cisplatin, and HU. Furthermore, nse-1 mutation exacerbates germ cell death by upregulating ced-13 and egl-1 genes involved in the CEP-1/p53-mediated apoptotic pathway. NSE-1 is essential for the proper localization of NSE-4 and MAGE-1 on the chromosomes. Collectively, these findings firmly establish nse-1 as a crucial factor in maintaining genomic stability.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Male , Humans , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cell Cycle Proteins/metabolism , DNA Repair , Meiosis , Genomic Instability , Caenorhabditis elegans Proteins/genetics
5.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38304162

ABSTRACT

COSA-1 is essential for accurate meiosis in C. elegans . Two null mutants ( cosa-1 ( me13 ) and cosa-1 ( tm3298 ) ) have been notably studied. These null mutants exhibit severe meiotic defects, hindering the observation of the subtle or dynamic nature of COSA-1 function. To overcome these limitations, we developed a C. elegans strain with inducible COSA-1 degradation using the Auxin-Inducible Degron (AID) system. This strain exhibits normal fertility and COSA-1::GFP foci. Auxin treatment successfully depletes COSA-1, resulting in a 96% decrease in progeny viability and 12 univalent chromosomes in diakinesis oocytes. This strain serves as a valuable tool for studying the dynamics of COSA-1.

6.
Nat Microbiol ; 9(2): 346-358, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225460

ABSTRACT

Antibiotic tolerance is the ability of a susceptible population to survive high doses of cidal drugs and has been shown to compromise therapeutic outcomes in bacterial infections. In comparison, whether fungicide tolerance can be induced by host-derived factors during fungal diseases remains largely unknown. Here, through a systematic evaluation of metabolite-drug-fungal interactions in the leading fungal meningitis pathogen, Cryptococcus neoformans, we found that brain glucose induces fungal tolerance to amphotericin B (AmB) in mouse brain tissue and patient cerebrospinal fluid via the fungal glucose repression activator Mig1. Mig1-mediated tolerance limits treatment efficacy for cryptococcal meningitis in mice via inhibiting the synthesis of ergosterol, the target of AmB, and promoting the production of inositolphosphorylceramide, which competes with AmB for ergosterol. Furthermore, AmB combined with an inhibitor of fungal-specific inositolphosphorylceramide synthase, aureobasidin A, shows better efficacy against cryptococcal meningitis in mice than do clinically recommended therapies.


Subject(s)
Cryptococcus neoformans , Meningitis, Cryptococcal , Humans , Animals , Mice , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Meningitis, Cryptococcal/drug therapy , Meningitis, Cryptococcal/microbiology , Antifungal Agents/pharmacology , Brain , Ergosterol/therapeutic use
7.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 211-225, 2024 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-38258642

ABSTRACT

The banana Fusarium wilt (BFW) caused by Fusarium oxysporum f. sp. cubense tropical race4 (FocTR4) is difficult to control worldwide, which causes a huge economic losse to banana industry. The purpose of this study was to screen Trichoderma strains with antagonistic activity against FocTR4, to isolate and purify the active compound from the fermentation broth, so as to provide important biocontrol strains and active compound resources. In this work, Trichoderma strains were isolated and screened from the rhizosphere soil of crops, and the strains capable of efficiently inhibiting FocTR4 were screened by plate confrontation, and further confirmed by testing inhibition for the conidial germination and mycelial growth of FocTR4. The phylogenetic tree clarified the taxonomic status of the biocontrol strains. Moreover, the active components in the fermentation broth of the strains were separated and purified by column chromatography, the structure of the most active component was analyzed by nuclear magnetic resonance spectroscopy (NMR), the BFW control effect was tested by pot experiments. We obtained a strain JSHA-CD-1003 with antagonistic activity against FocTR4, and the inhibition rate from plate confrontation was 60.6%. The fermentation broth of JSHA-CD-1003 completely inhibited the germination of FocTR4 conidia within 24 hours. The inhibition rate of FocTR4 hyphae growth was 52.6% within 7 d. A phylogenetic tree was constructed based on the ITS and tef1-α gene tandem sequences, and JSHA-CD-1003 was identified as Trichoderma brevicompactum. Purification and NMR identification showed that the single active compound was trichodermin, and the minimum inhibitory concentration (MIC) was 25 µg/mL. Pot experiments showed that the fermentation broth of strain JSHA-CD-1003 was effective against BFW. The control rate of leaf yellowing was 47.4%, and the rate of bulb browning was 52.0%. Therefore, JSHA-CD-1003 effectively inhibited FocTR4 conidial germination and mycelium growth through producing trichodermin, and showed biocontrol effect on banana wilt caused by FocTR4, thus is a potential biocontrol strain.


Subject(s)
Fusarium , Hypocreales , Musa , Phylogeny , Trichodermin
8.
Microbiol Spectr ; 12(2): e0316923, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38206032

ABSTRACT

Yeast cells involved in fermentation processes face various stressors that disrupt redox homeostasis and cause cellular damage, making the study of oxidative stress mechanisms crucial. In this investigation, we isolated a resilient yeast strain, Candida nivariensis GXAS-CN, capable of thriving in the presence of high concentrations of H2O2. Transcriptomic analysis revealed the up-regulation of multiple antioxidant genes in response to oxidative stress. Deletion of the catalase gene Cncat significantly impacted H2O2-induced oxidative stress. Enzymatic analysis of recombinant CnCat highlighted its highly efficient catalase activity and its essential role in mitigating H2O2. Furthermore, over-expression of CnCat in Saccharomyces cerevisiae improved oxidative resistance by reducing intracellular ROS accumulation. The presence of multiple stress-responsive transcription factor binding sites at the promoters of antioxidative genes indicates their regulation by different transcription factors. These findings demonstrate the potential of utilizing the remarkably tolerant C. nivariensis GXAS-CN or enhancing the resistance of S. cerevisiae to improve the efficiency and cost-effectiveness of industrial fermentation processes.IMPORTANCEEnduring oxidative stress is a crucial trait for fermentation strains. The importance of this research is its capacity to advance industrial fermentation processes. Through an in-depth examination of the mechanisms behind the remarkable H2O2 resistance in Candida nivariensis GXAS-CN and the successful genetic manipulation of this strain, we open the door to harnessing the potential of the catalase CnCat for enhancing the oxidative stress resistance and performance of yeast strains. This pioneering achievement creates avenues for fine-tuning yeast strains for precise industrial applications, ultimately leading to more efficient and cost-effective biotechnological processes.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Catalase/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Antioxidants/metabolism
9.
Food Funct ; 15(2): 530-542, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38108452

ABSTRACT

Methyl Ganoderate E (MGE) is a triterpenoid derived from Ganoderma lucidum (Reishi), an edible mushroom, commonly processed into food forms such as soups, drinks, culinary dishes, and supplements. MGE has been shown to inhibit 3T3-L1 murine adipocyte differentiation when combined with other G. lucidum triterpenes. However, the specific effect of MGE on biological processes remains unknown. In this study, we present the first evidence of MGE's anti-aging effect in Caenorhabditis elegans. Through our screening process using the UPRER regulation ability, we evaluated a library of 74 pure compounds isolated from G. lucidum, and MGE exhibited the most promising results. Subsequent experiments demonstrated that MGE extended the lifespan by 26% at 10 µg ml-1 through daf-16, hsf-1, and skn-1-dependent pathways. MGE also enhanced resistance to various molecular stressors, improved healthspan, increased fertility, and reduced the aggregation of alpha-synuclein and amyloid-beta. Transcriptome data revealed that MGE promoted processes associated with proteolysis and neural activity, while not promoting cell death processes. Collectively, our findings suggest that G. lucidum MGE could be considered as a potential anti-aging intervention, adding to the growing list of such interventions.


Subject(s)
Ganoderma , Reishi , Triterpenes , Mice , Animals , Longevity , Caenorhabditis elegans/genetics , Aging , Triterpenes/pharmacology
10.
J Fungi (Basel) ; 9(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37998853

ABSTRACT

Banana Fusarium wilt (BFW), caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc), poses significant threats to banana cultivation. Currently, effective control methods are lacking, and biological control has emerged as a possible strategy to manage BFW outbreaks. In this investigation, 109 bacterial strains were isolated from the rhizospheric soil surrounding banana plants in search of potent biological agents against Foc. Strain 91 exhibited the highest antifungal activity against the causal agent of Foc and was identified as Pseudomonas aeruginosa through 16S rRNA gene sequencing and scanning electron microscopy (SEM). Elucidation of strain 91's inhibitory mechanism against Foc revealed a multifaceted antagonistic approach, encompassing the production of bioactive compounds and the secretion of cell wall hydrolytic enzymes. Furthermore, strain 91 displayed various traits associated with promoting plant growth and showed adaptability to different carbon sources. By genetically tagging with constitutively expressing GFP signals, effective colonization of strain 91 was mainly demonstrated in root followed by leaf and stem tissues. Altogether, our study reveals the potential of P. aeruginosa 91 for biocontrol based on inhibition mechanism, adaptation, and colonization features, thus providing a promising candidate for the control of BFW.

11.
Cell Surf ; 10: 100114, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38024560
12.
Genetics ; 225(2)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37579186

ABSTRACT

Melanoma antigen (MAGE) genes encode for a family of proteins that share a common MAGE homology domain. These genes are conserved in eukaryotes and have been linked to a variety of cellular and developmental processes including ubiquitination and oncogenesis in cancer. Current knowledge on the MAGE family of proteins mainly comes from the analysis of yeast and human cell lines, and their functions have not been reported at an organismal level in animals. Caenorhabditis elegans only encodes 1 known MAGE gene member, mage-1 (NSE3 in yeast), forming part of the SMC-5/6 complex. Here, we characterize the role of mage-1/nse-3 in mitosis and meiosis in C. elegans. mage-1/nse-3 has a role in inter-sister recombination repair during meiotic recombination and for preserving chromosomal integrity upon treatment with a variety of DNA-damaging agents. MAGE-1 directly interacts with NSE-1 and NSE-4. In contrast to smc-5, smc-6, and nse-4 mutants which cause the loss of NSE-1 nuclear localization and strong cytoplasmic accumulation, mage-1/nse-3 mutants have a reduced level of NSE-1::GFP, remnant NSE-1::GFP being partially nuclear but largely cytoplasmic. Our data suggest that MAGE-1 is essential for NSE-1 stability and the proper functioning of the SMC-5/6 complex.


Subject(s)
Caenorhabditis elegans Proteins , Genomic Instability , Animals , Humans , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Meiosis/genetics , Saccharomyces cerevisiae/genetics
13.
Adv Drug Deliv Rev ; 200: 115007, 2023 09.
Article in English | MEDLINE | ID: mdl-37437715

ABSTRACT

Human pathogenic fungi pose a serious threat to human health and safety. Unfortunately, the limited number of antifungal options is exacerbated by the continuous emergence of drug-resistant variants, leading to frequent drug treatment failures. Recent studies have also highlighted the clinical importance of other modes of fungal survival of antifungal treatment, including drug tolerance and persistence, pointing to the complexity of the fungal response to antifungal drugs. A lack of understanding of the fungal drug response has hampered the identification of new targets, the development of alternative antifungal strategies and the design of appropriate delivery systems. In this review we summarize recent advances in the study of antifungal resistance, tolerance and persistence, with an emphasis on promising drug targets and drug delivery systems that may yield important insights into the development of new or improved antifungal therapies against fungal infections.


Subject(s)
Antifungal Agents , Mycoses , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mycoses/drug therapy , Fungi/physiology , Drug Tolerance , Drug Delivery Systems
14.
Molecules ; 28(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298840

ABSTRACT

Plant parasitic nematodes (PPNs) are highly destructive and difficult to control, while conventional chemical nematicides are highly toxic and cause serious environmental pollution. Additionally, resistance to existing pesticides is becoming increasingly common. Biological control is the most promising method for the controlling of PPNs. Therefore, the screening of nematicidal microbial resources and the identification of natural products are of great significance and urgency for the environmentally friendly control of PPNs. In this study, the DT10 strain was isolated from wild moss samples and identified as Streptomyces sp. by morphological and molecular analysis. Using Caenorhabditis elegans as a model, the extract of DT10 was screened for nematicidal activity, which elicited 100% lethality. The active compound was isolated from the extracts of strain DT10 using silica gel column chromatography and semipreparative high-performance liquid chromatography (HPLC). The compound was identified as spectinabilin (chemical formula C28H31O6N) using liquid chromatography mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). Spectinabilin exhibited a good nematicidal activity on C. elegans L1 worms, with a half-maximal inhibitory concentration (IC50) of 2.948 µg/mL at 24 h. The locomotive ability of C. elegans L4 worms was significantly reduced when treated with 40 µg/mL spectinabilin. Further analysis of spectinabilin against known nematicidal drug target genes in C. elegans showed that it acts via target(s) different from those of some currently used nematicidal drugs such as avermectin and phosphine thiazole. This is the first report on the nematicidal activity of spectinabilin on C. elegans and the southern root-knot nematode Meloidogyne incognita. These findings may pave the way for further research and application of spectinabilin as a potential biological nematicide.


Subject(s)
Streptomyces , Tylenchoidea , Animals , Caenorhabditis elegans , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry
15.
Nutrients ; 15(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37375545

ABSTRACT

Dendrobium officinale is one of the most widely used medicinal herbs, especially in Asia. In recent times, the polysaccharide content of D. officinale has garnered attention due to the numerous reports of its medicinal properties, such as anticancer, antioxidant, anti-diabetic, hepatoprotective, neuroprotective, and anti-aging activities. However, few reports of its anti-aging potential are available. Due to high demand, the wild D. officinale is scarce; hence, alternative cultivation methods are being employed. In this study, we used the Caenorhabditis elegans model to investigate the anti-aging potential of polysaccharides extracted from D. officinale (DOP) grown in three different environments; tree (TR), greenhouse (GH), and rock (RK). Our findings showed that at 1000 µg/mL, GH-DOP optimally extended the mean lifespan by 14% and the maximum lifespan by 25% (p < 0.0001). TR-DOP and RK-DOP did not extend their lifespan at any of the concentrations tested. We further showed that 2000 µg/mL TR-DOP, GH-DOP, or RK-DOP all enhanced resistance to H2O2-induced stress (p > 0.05, p < 0.01, and p < 0.01, respectively). In contrast, only RK-DOP exhibited resistance (p < 0.01) to thermal stress. Overall, DOP from the three sources all increased HSP-4::GFP levels, indicating a boost in the ability of the worms to respond to ER-related stress. Similarly, DOP from all three sources decreased α-synuclein aggregation; however, only GH-DOP delayed ß-amyloid-induced paralysis (p < 0.0001). Our findings provide useful information on the health benefits of DOP and also provide clues on the best practices for cultivating D. officinale for maximum medicinal applications.


Subject(s)
Dendrobium , Animals , Caenorhabditis elegans , Hydrogen Peroxide , Polysaccharides/pharmacology , Antioxidants/pharmacology
16.
Front Genet ; 14: 1133593, 2023.
Article in English | MEDLINE | ID: mdl-37229189

ABSTRACT

Aspergillus fumigatus is one of the most common pathogenic fungi, which results in high morbidity and mortality in immunocompromised patients. Amphotericin B (AMB) is used as the core drug for the treatment of triazole-resistant A. fumigatus. Following the usage of amphotericin B drugs, the number of amphotericin B-resistant A. fumigatus isolates showed an increasing trend over the years, but the mechanism and mutations associated with amphotericin B sensitivity are not fully understood. In this study, we performed a k-mer-based genome-wide association study (GWAS) in 98 A. fumigatus isolates from public databases. Associations identified with k-mers not only recapitulate those with SNPs but also discover new associations with insertion/deletion (indel). Compared to SNP sites, the indel showed a stronger association with amphotericin B resistance, and a significant correlated indel is present in the exon region of AFUA_7G05160, encoding a fumarylacetoacetate hydrolase (FAH) family protein. Enrichment analysis revealed sphingolipid synthesis and transmembrane transport may be related to the resistance of A. fumigatus to amphotericin B. The expansion of variant types detected by the k-mer method increases opportunities to identify and exploit complex genetic variants that drive amphotericin B resistance, and these candidate variants help accelerate the selection of prospective gene markers for amphotericin B resistance screening in A. fumigatus.

17.
J Fungi (Basel) ; 9(4)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37108932

ABSTRACT

Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) causes Fusarium wilt of banana, necessitating urgent measures to control this disease. However, the molecular mechanisms underlying Foc TR4 virulence remain elusive. Phosphomannose isomerase is a key enzyme involved in the biosynthesis of GDP mannose, an important precursor of fungal cell walls. In this study, two phosphomannose isomerases were identified in the Foc TR4 genome, of which only Focpmi1 was highly expressed throughout all developmental stages. Generated null mutants in Foc TR4 showed that only the ΔFocpmi1 mutant required exogenous mannose for growth, indicating that Focpmi1 is the key enzyme involved in GDP mannose biosynthesis. The Focpmi1 deficient strain was unable to grow without exogenous mannose and exhibited impaired growth under stress conditions. The mutant had reduced chitin content in its cell wall, rendering it vulnerable to cell wall stresses. Transcriptomic analysis revealed up- and down-regulation of several genes involved in host cell wall degradation and physiological processes due to the loss of Focpmi1. Furthermore, Focpmi1 was also found to be crucial for Foc TR4 infection and virulence, making it a potential antifungal target to address the threats posed by Foc TR4.

18.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-36060030

ABSTRACT

The C. elegans cosa-1 gene encodes the crossover site-associated-1 (COSA-1) protein, a cyclin-related protein that functions in promoting crossovers (COs) during meiosis. Previous studies regarding CO dynamics in live C. elegans have mostly relied on the green fluorescent protein-tagged cosa-1 transgenic strain, which was generated by the microparticle bombardment method. Here, we insert the red fluorescence protein mCherry at the C-terminal of the cosa-1 gene to establish cosa-1::mCherry transgenic worm by the CRISPR/Cas9 technique. The COSA-1::mCherry was observed to appear from the early pachytene, and disappear in the diplotene zone of the germline, with 6 COSA-1:: mCherry foci in the late pachytene, which colocalized with GFP::COSA-1 from AV630 strain. Furthermore, the transgenic strain harboring a cosa-1::mCherry fusion shows no defect in the brood size, progeny viability and male frequency, which provides a useful tool for the meiotic analysis in C. elegans .

19.
mBio ; 13(4): e0142622, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35913157

ABSTRACT

Aspergillus fumigatus is a devastating opportunistic fungal pathogen causing hundreds of thousands of deaths every year. Phosphoglucose isomerase (PGI) is a glycolytic enzyme that converts glucose-6-phosphate to fructose-6-phosphate, a key precursor of fungal cell wall biosynthesis. Here, we demonstrate that the growth of A. fumigatus is repressed by the deletion of pgi, which can be rescued by glucose and fructose supplementation in a 1:10 ratio. Even under these optimized growth conditions, the Δpgi mutant exhibits severe cell wall defects, retarded development, and attenuated virulence in Caenorhabditis elegans and Galleria mellonella infection models. To facilitate exploitation of A. fumigatus PGI as an antifungal target, we determined its crystal structure, revealing potential avenues for developing inhibitors, which could potentially be used as adjunctive therapy in combination with other systemic antifungals. IMPORTANCE Aspergillus fumigatus is an opportunistic fungal pathogen causing deadly infections in immunocompromised patients. Enzymes essential for fungal survival and cell wall biosynthesis are considered potential drug targets against A. fumigatus. PGI catalyzes the second step of the glycolysis pathway, linking glycolysis and the pentose phosphate pathway. As such, PGI has been widely considered as a target for metabolic regulation and therefore a therapeutic target against hypoxia-related diseases. Our study here reveals that PGI is important for A. fumigatus survival and exhibit pleiotropic functions, including development, cell wall glucan biosynthesis, and virulence. We also solved the crystal structure of PGI, thus providing the genetic and structural groundwork for the exploitation of PGI as a potential antifungal target.


Subject(s)
Aspergillus fumigatus , Glucose-6-Phosphate Isomerase , Antifungal Agents/pharmacology , Aspergillus fumigatus/metabolism , Cell Wall/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/metabolism , Humans , Virulence
20.
Microbiol Spectr ; 10(5): e0202722, 2022 10 26.
Article in English | MEDLINE | ID: mdl-35980200

ABSTRACT

Aspergillus flavus causes invasive aspergillosis in immunocompromised patients and severe contamination of agriculturally important crops by producing aflatoxins. The fungal cell wall is absent in animals and is structurally different from that of plants, which makes it a potential antifungal drug target due to its essentiality for fungal survival. Mannose is one of the important components in the fungal cell wall, which requires GDP-mannose (GDP-Man) as the primary donor. Three consecutive enzymes, namely, phosphomannose isomerase (PMI), phosphomannose mutase (PMM), and GDP-mannose phosphorylase (GMPP), are required for GDP-Man biosynthesis. Thus, PMI is of prime importance in cell wall biosynthesis and also has an active role in sugar metabolism. Here, we investigated the functional role of PMI in A. flavus by generating a pmiA-deficient strain. The mutant required exogenous mannose to survive and exhibited reduced growth rate, impaired conidiation, early germination, disturbance in stress responses, and defects in colonization of crop seeds. Furthermore, attenuated virulence of the mutant was documented in both Caenorhabditis elegans and Galleria mellonella infection models. Our results suggested that PMI plays an important role in the development, stress responses, and pathogenicity of A. flavus and therefore could serve as a potential target for battling against infection and controlling aflatoxin contamination caused by A. flavus. IMPORTANCE Aspergillus flavus is a common fungal pathogen of humans, animals, and agriculturally important crops. It causes invasive aspergillosis in humans and also produces highly carcinogenic mycotoxins in postharvest crops that threaten food safety worldwide. To alleviate or eliminate the threats posed by A. flavus, it is necessary to identify genes involved in pathogenicity and mycotoxin contamination. However, little progress has been made in this regard. Here, we focused on PMI, which is the first enzyme involved in the biosynthesis pathway of GDP-Man and thus is important for cell wall synthesis and protein glycosylation. Our study revealed that PMI is important for growth of A. flavus. It is also involved in conidiation, germination, morphogenesis, stress responses, and pathogenicity of A. flavus. Thus, PMI is a potent antifungal target to curb the threats posed by A. flavus.


Subject(s)
Aflatoxins , Aspergillosis , Intramolecular Transferases , Animals , Humans , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Virulence/genetics , Mannose-6-Phosphate Isomerase/genetics , Mannose-6-Phosphate Isomerase/metabolism , Antifungal Agents , Mannose/metabolism , Aflatoxins/metabolism , Intramolecular Transferases/metabolism , Fungal Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL