Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 98(8): 4426-30, 2001 Apr 10.
Article in English | MEDLINE | ID: mdl-11287635

ABSTRACT

Intramolecular electron transfer in azurin in water and deuterium oxide has been studied over a broad temperature range. The kinetic deuterium isotope effect, k(H)/k(D), is smaller than unity (0.7 at 298 K), primarily caused by the different activation entropies in water (-56.5 J K(-1) mol(-1)) and in deuterium oxide (-35.7 J K(-1) mol(-1)). This difference suggests a role for distinct protein solvation in the two media, which is supported by the results of voltammetric measurements: the reduction potential (E(0')) of Cu(2+/+) at 298 K is 10 mV more positive in D(2)O than in H(2)O. The temperature dependence of E(0') is also different, yielding entropy changes of -57 J K(-1) mol(-1) in water and -84 J K(-1) mol(-1) in deuterium oxide. The driving force difference of 10 mV is in keeping with the kinetic isotope effect, but the contribution to DeltaS from the temperature dependence of E(0') is positive rather than negative. Isotope effects are, however, also inherent in the nuclear reorganization Gibbs free energy and in the tunneling factor for the electron transfer process. A slightly larger thermal protein expansion in H(2)O than in D(2)O (0.001 nm K(-1)) is sufficient both to account for the activation entropy difference and to compensate for the different temperature dependencies of E(0'). Thus, differences in driving force and thermal expansion appear as the most straightforward rationale for the observed isotope effect.


Subject(s)
Azurin/metabolism , Pseudomonas aeruginosa/chemistry , Azurin/chemistry , Deuterium , Electrochemistry , Electron Transport , Kinetics , Thermodynamics
2.
Eur J Biochem ; 267(11): 3123-9, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10824096

ABSTRACT

Azurin contains two potential redox sites, a copper centre and, at the opposite end of the molecule, a cystine disulfide (RSSR). Intramolecular electron transfer between a pulse radiolytically produced RSSR- radical anion and the blue Cu(II) ion was studied in a series of azurins in which single-site mutations were introduced into the copper ligand sphere. In the Met121His mutant, the rate constant for intramolecular electron transfer is half that of the corresponding wild-type azurin. In the His46Gly and His117Gly mutants, a water molecule is co-ordinated to the copper ion when no external ligands are added. Both these mutants also exhibit slower intramolecular electron transfer than the corresponding wild-type azurin. However, for the His117Gly mutant in the presence of excess imidazole, an azurin-imidazole complex is formed and the intramolecular electron-transfer rate increases considerably, becoming threefold faster than that observed in the native protein. Activation parameters for all these electron-transfer processes were determined and combined with data from earlier studies on intramolecular electron transfer in wild-type and single-site-mutated azurins. A linear relationship between activation enthalpy and activation entropy was observed. These results are discussed in terms of reorganization energies, driving force and possible electron-transfer pathways.


Subject(s)
Azurin/metabolism , Electron Transport , Alcaligenes/genetics , Alcaligenes/metabolism , Azurin/chemistry , Azurin/genetics , Binding Sites , Copper/chemistry , Cystine/chemistry , Free Radicals , Mutagenesis, Site-Directed , Oxidation-Reduction , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Thermodynamics
3.
Eur J Biochem ; 267(4): 950-4, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10672001

ABSTRACT

Intramolecular electron transfer (ET) between the CuA center and heme a in bovine cytochrome c oxidase was investigated by pulse radiolysis. CuA, the initial electron acceptor, was reduced by 1-methyl nicotinamide radicals in a diffusion-controlled reaction, as monitored by absorption changes at 830 nm. After the initial reduction phase, the 830 nm absorption was partially restored, corresponding to reoxidation of the CuA center. Concomitantly, the absorption at 445 nm and 605 nm increased, indicating reduction of heme a. The rate constants for heme a reduction and CuA reoxidation were identical within experimental error and independent of the enzyme concentration. This demonstrates that a fast intramolecular electron equilibration is taking place between CuA and heme a. The rate constants for CuA --> heme a ET and the reverse (heme a --> CuA) process were found to be 13 000 s-1 and 3700 s-1, respectively, at 25 degrees C and pH 7.4. This corresponds to an equilibrium constant of 3.4 under these conditions. Thermodynamic and activation parameters of the ET reactions were determined. The significance of these results, particularly the observed low activation barriers, are discussed within the framework of the known three-dimensional structure, ET pathways and reorganization energies.


Subject(s)
Electron Transport Complex IV/metabolism , Animals , Cattle , Copper/metabolism , Electron Transport , Electron Transport Complex IV/chemistry , Heme/analogs & derivatives , Heme/metabolism , Kinetics , Myocardium/enzymology , Protein Conformation , Pulse Radiolysis , Thermodynamics
4.
Eur J Biochem ; 266(3): 820-30, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10583375

ABSTRACT

Azide binding to the blue copper oxidases laccase and ascorbate oxidase (AO) was investigated by electron paramagnetic resonance (EPR) and pulsed electron-nuclear double resonance (ENDOR) spectroscopies. As the laccase : azide molar ratio decreases from 1:1 to 1:7, the intensity of the type 2 (T2) Cu(II) EPR signal decreases and a signal at g approximately 1.9 appears. Temperature and microwave power dependent EPR measurements showed that this signal has a relatively short relaxation time and is therefore observed only below 40 K. A g approximately 1.97 signal, with similar saturation characteristics was found in the AO : azide (1:7) sample. The g < 2 signals in both proteins are assigned to an S = 1 dipolar coupled Cu(II) pair whereby the azide binding disrupts the anti-ferromagnetic coupling of the type 3 (T3) Cu(II) pair. Analysis of the position of the g < 2 signals suggests that the distance between the dipolar coupled Cu(II) pair is shorter in laccase than in AO. The proximity of T2 Cu(II) to the S = 1 Cu(II) pair enhances its relaxation rate, reducing its signal intensity relative to that of native protein. The disruption of the T3 anti-ferromagnetic coupling occurs only in part of the protein molecules, and in the remaining part a different azide binding mode is observed. The 130 K EPR spectra of AO and laccase with azide (1:7) exhibit, in addition to an unperturbed T2 Cu(II) signal, new features in the g parallel region that are attributed to a perturbed T2 in protein molecules where the anti-ferromagnetic coupling of T3 has not been disrupted. While these features are also apparent in the AO : azide sample at 10 K, they are absent in the EPR spectra of the laccase : azide sample measured in the range of 6-90 K. Moreover, pulsed ENDOR measurements carried out at 4.2 K on the latter exhibited only a reduction in the intensity of the 20 MHz peak of the 14N histidine coordinated to the T2 Cu(II) but did not resolve any significant changes that could indicate azide binding to this ion. The lack of T2 Cu(II) signal perturbation below 90 K in laccase may be due to temperature dependence of the coupling within the trinuclear : azide complex.


Subject(s)
Ascorbate Oxidase/chemistry , Ascorbate Oxidase/metabolism , Azides/metabolism , Copper/chemistry , Copper/metabolism , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Binding Sites , Electron Spin Resonance Spectroscopy , Laccase , Models, Molecular , Plants/enzymology , Protein Conformation
5.
Biochim Biophys Acta ; 1434(1): 103-13, 1999 Sep 14.
Article in English | MEDLINE | ID: mdl-10556564

ABSTRACT

We have optimised the overexpression and purification of the N-terminal end of the Menkes disease protein expressed in Escherichia coli, containing one, two and six metal binding domains (MBD), respectively. The domain(s) have been characterised using circular dichroism (CD) and fluorescence spectroscopy, and their copper(I) binding properties have been determined. Structure prediction derived from far-UV CD indicates that the secondary structure is similar in the three proteins and dominated by beta-sheet. The tryptophan fluorescence maximum is blue-shifted in the constructs containing two and six MBDs relative to the monomer, suggesting more structurally buried tryptophan(s), compared to the single MBD construct. Copper(I) binding has been studied by equilibrium dialysis under anaerobic conditions. We show that the copper(I) binding to constructs containing two and six domains is cooperative, with Hill coefficients of 1.5 and 4, respectively. The apparent affinities are described by K(0.5), determined to be 65 microM and 19 microM for constructs containing two and six domains, respectively. Our data reveal a unique regulation of Menkes protein upon a change in copper(I) concentration. The regulation does not occur as an 'all-or-none' cooperativity, suggesting that the copper(I) binding domains have a basal low affinity for binding and release of copper(I) at low concentrations but are able to respond to higher copper levels by increasing the affinity, thereby contributing to prevent the copper concentration from reaching toxic levels in the cell.


Subject(s)
Adenosine Triphosphatases/chemistry , Carrier Proteins/chemistry , Cation Transport Proteins , Copper/chemistry , Recombinant Fusion Proteins , Adenosine Triphosphatases/genetics , Carrier Proteins/genetics , Cations/chemistry , Circular Dichroism , Copper-Transporting ATPases , Escherichia coli , Gene Expression Regulation , Humans , Plasmids , Spectrometry, Fluorescence
6.
Eur J Biochem ; 264(3): 890-6, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10491137

ABSTRACT

The cDNA, coding for the first metal-binding domain (MBD1) of Menkes protein, was cloned into the T7-system based vector, pCA. The T7 lysozyme-encoding plasmid, pLysS, is shown to be crucial for expression, suggesting that the protein is toxic to the cells. Adding copper to the growth medium did not affect the plasmid stability. MBD1 is purified in two steps with a typical yield of 12 mg.L-1. Menkes protein, a P-type ATPase, contains a sequence GMXCXSC that is repeated six times, at the N-terminus. The paired cysteine residues are involved in metal binding. MBD1 has only two cysteine residues, which can exist as free thiol groups (reduced), as a disulphide bond (oxidized) or bound to a metal ion [e.g. Cu(I)-MBD1]. These three MBD1 forms have been investigated using CD. No major spectral change was seen between the different MBD1 forms, indicating that the folding is not changed upon metal binding. A copper-bound MBD1 was also studied by EPR, and the lack of an EPR signal suggests that the oxidation state of copper bound to MBD1 is Cu(I). Cu(I) binding studies were performed by equilibrium dialysis and revealed a stoichiometry of 1 : 1 and an apparent Kd = 46 microM. Oxidized MBD1, however, is not able to bind copper. Different copper complexes were investigated for their ability to reconstitute apo-MBD1. Given the same total copper concentration CuCl43- was superior to Cu(I)-thiourea (structural analogue of metallothionein) and Cu(I)-glutathione (used at fivefold higher copper concentration) although the latter two were able to partially reconstitute apo-MBD1. Cu(II) was not able to reconstitute apo-MBD1, presumably due to Cu(II)-induced oxidation of the thiol groups. Based on our results, glutathione and/or metallothionein are likely candidates for the in vivo incorporation of copper to Menkes protein.


Subject(s)
Adenosine Triphosphatases/isolation & purification , Adenosine Triphosphatases/metabolism , Carrier Proteins/isolation & purification , Carrier Proteins/metabolism , Cation Transport Proteins , Copper/metabolism , Recombinant Fusion Proteins , Adenosine Triphosphatases/genetics , Amino Acid Sequence , Base Sequence , Binding Sites , Carrier Proteins/genetics , Circular Dichroism , Cloning, Molecular , Copper-Transporting ATPases , Cysteine/chemistry , DNA Primers/genetics , Escherichia coli/genetics , Gene Expression , Humans , In Vitro Techniques , Kinetics , Oxidation-Reduction , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
7.
J Biol Chem ; 274(37): 26135-40, 1999 Sep 10.
Article in English | MEDLINE | ID: mdl-10473564

ABSTRACT

Pulse radiolytic reduction of disulfide bridges in ceruloplasmin yielding RSSR(-) radicals induces a cascade of intramolecular electron transfer (ET) processes. Based on the three-dimensional structure of ceruloplasmin identification of individual kinetically active disulfide groups and type 1 (T1) copper centers, the following is proposed. The first T1 copper(II) ion to be reduced in ceruloplasmin is the blue copper center of domain 6 (T1A) by ET from RSSR(-) of domain 5. The rate constant is 28 +/- 2 s(-1) at 279 K and pH 7.0. T1A is in close covalent contact with the type 3 copper pair and indeed electron equilibration between T1A and the trinuclear copper center in the domain 1-6 interface takes place with a rate constant of 2.9 +/- 0.6 s(-1). The equilibrium constant is 0.17. Following reduction of T1A Cu(II), another ET process takes place between RSSR(-) and T1B copper(II) of domain 4 with a rate constant of 3.9 +/- 0.8. No reoxidation of T1B Cu(I) could be resolved. It appears that the third T1 center (T1C of domain 2) is not participating in intramolecular ET, as it seems to be in a reduced state in the resting enzyme.


Subject(s)
Ceruloplasmin/chemistry , Electron Transport , Humans , Kinetics , Oxidation-Reduction , Pulse Radiolysis
8.
FEBS Lett ; 457(2): 277-82, 1999 Aug 27.
Article in English | MEDLINE | ID: mdl-10471793

ABSTRACT

A novel method for the initiation of intramolecular electron transfer reactions in azurin is reported. The method is based on laser photoexcitation of covalently attached thiouredopyrenetrisulfonate (TUPS), the reaction that generates the low potential triplet state of the dye with high quantum efficiency. TUPS derivatives of azurin, singly labeled at specific lysine residues, were prepared and purified to homogeneity by ion exchange HPLC. Transient absorption spectroscopy was used to directly monitor the rates of the electron transfer reaction from the photoexcited triplet state of TUPS to Cu(II) and the back reaction from Cu(I) to the oxidized dye. For all singly labeled derivatives, the rate constants of copper ion reduction were one or two orders of magnitude larger than for its reoxidation, consistent with the larger thermodynamic driving force for the former process. Using 3-D coordinates of the crystal structure of Pseudomonas aeruginosa azurin and molecular structure calculation of the TUPS modified proteins, electron transfer pathways were calculated. Analysis of the results revealed a good correlation between separation distance from donor to Cu ligating atom (His-N or Cys-S) and the observed rate constants of Cu(II) reduction.


Subject(s)
Azurin/chemistry , Azurin/analogs & derivatives , Chromatography, High Pressure Liquid , Coloring Agents/chemistry , Copper/chemistry , Electron Transport/radiation effects , Kinetics , Lasers , Lysine/chemistry , Lysine/isolation & purification , Pseudomonas aeruginosa/metabolism , Pyrenes , Spectrum Analysis , Time Factors
9.
Proc Natl Acad Sci U S A ; 96(3): 899-902, 1999 Feb 02.
Article in English | MEDLINE | ID: mdl-9927665

ABSTRACT

The recent expression of an azurin mutant where the blue type 1 copper site is replaced by the purple CuA site of Paracoccus denitrificans cytochrome c oxidase has yielded an optimal system for examining the unique electron mediation properties of the binuclear CuA center, because both type 1 and CuA centers are placed in the same location in the protein while all other structural elements remain the same. Long-range electron transfer is induced between the disulfide radical anion, produced pulse radiolytically, and the oxidized binuclear CuA center in the purple azurin mutant. The rate constant of this intramolecular process, kET = 650 +/- 60 s-1 at 298 K and pH 5.1, is almost 3-fold faster than for the same process in the wild-type single blue copper azurin from Pseudomonas aeruginosa (250 +/- 20 s-1), in spite of a smaller driving force (0.69 eV for purple CuA azurin vs. 0.76 eV for blue copper azurin). The reorganization energy of the CuA center is calculated to be 0.4 eV, which is only 50% of that found for the wild-type azurin. These results represent a direct comparison of electron transfer properties of the blue and purple CuA sites in the same protein framework and provide support for the notion that the binuclear purple CuA center is a more efficient electron transfer agent than the blue single copper center because reactivity of the former involves a lower reorganization energy.


Subject(s)
Azurin/chemistry , Azurin/metabolism , Copper/metabolism , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/metabolism , Paracoccus denitrificans/enzymology , Calorimetry , Electron Transport , Entropy , Kinetics , Oxidation-Reduction , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Thermodynamics
10.
J Chromatogr B Biomed Sci Appl ; 735(1): 85-91, 1999 Nov 26.
Article in English | MEDLINE | ID: mdl-10630893

ABSTRACT

Cu2+, Ni2+, Zn2+, Co2+ and Cd2+ were evaluated in metal ion affinity chromatography for enrichment of selenoprotein P, and immobilized Co2+ affinity chromatography was found to be the most selective chromatographic method. The chromatography was performed by fast protein liquid chromatography and the fractionation was followed by analysis of the collected fractions for selenium by inductively coupled plasma mass spectrometry. By the combination of immobilized Co2+ affinity chromatography and heparin affinity chromatography a simple method was developed yielding a 14,800-fold enrichment of selenoprotein P. The purity of the protein was determined by SDS-PAGE and by sequencing from polyvinylidene difluoride blots of SDS-PAGE gels.


Subject(s)
Chromatography, Affinity/methods , Metals , Proteins/analysis , Affinity Labels , Amino Acid Sequence , Cadmium , Cobalt , Copper , Electrophoresis, Polyacrylamide Gel , Humans , Molecular Weight , Nickel , Proteins/chemistry , Selenoprotein P , Selenoproteins , Sepharose/analogs & derivatives , Zinc
11.
FEBS Lett ; 436(2): 239-42, 1998 Oct 02.
Article in English | MEDLINE | ID: mdl-9781686

ABSTRACT

The intramolecular electron transfer (ET) between the type 1 Cu(I) and the type 2 Cu(II) sites of Alcaligenes xylosoxidans dissimilatory nitrite reductase (AxNiR) has been studied in order to compare it with the analogous process taking place in ascorbate oxidase (AO). This internal process is induced following reduction of the type 1 Cu(II) by radicals produced by pulse radiolysis. The reversible ET reaction proceeds with a rate constant kET = k(1-->2) + k(2-->1) of 450 +/- 30 s(-1) at pH 7.0 and 298 K. The equilibrium constant K was determined to be 0.7 at 298 K from which the individual rate constants for the forward and backward reactions were calculated to be: k(1-->2) = 185 +/- 12 s(-1) and k(2-->1) 265 +/- 18 s(-1). The temperature dependence of K allowed us to determine the deltaH(o) value of the ET equilibrium to be 12.1 kJ mol(-1). Measurements of the temperature dependence of the ET process yielded the following activation parameters: forward reaction, deltaH* = 22.7 +/- 3.4 kJ mol(-1) and deltaS* = -126 +/- 11 J K(-1) mol(-1); backward reaction, deltaH* = 10.6 +/- 1.7 kJ mol(-1) and deltaS* = -164 +/- 15 J K(-1) mol(-1). X-ray crystallographic studies of NiRs suggest that the most probable ET pathway linking the two copper sites consists of Cys136, which provides the thiolate ligand to the type 1 copper ion, and the adjacent His135 residue with its imidazole being one of the ligands to the type 2 Cu ion. This pathway is essentially identical to that operating between the type 1 Cu(I) and the trinuclear copper centre in ascorbate oxidase, and the characteristics of the internal ET processes of these enzymes are compared. The data are consistent with the faster ET observed in nitrite reductase arising from a more advantageous entropy of activation when compared with ascorbate oxidase.


Subject(s)
Ascorbate Oxidase/chemistry , Ascorbate Oxidase/metabolism , Copper/metabolism , Nitrite Reductases/chemistry , Nitrite Reductases/metabolism , Alcaligenes/enzymology , Binding Sites , Calorimetry , Crystallography, X-Ray , Cysteine , Electron Transport , Histidine , Kinetics , Oxidation-Reduction , Thermodynamics
13.
J Biol Chem ; 269(37): 22933-6, 1994 Sep 16.
Article in English | MEDLINE | ID: mdl-8083190

ABSTRACT

Intramolecular electron transfer from the type 1 copper center to the type 3 copper(II) pair is induced in the multi-copper enzyme, ascorbate oxidase, following pulse radiolytic reduction of the type 1 Cu(II) ion. In the presence of a slight excess of dioxygen over ascorbate oxidase, interaction between the trinuclear copper center and O2 is observed even with singly reduced ascorbate oxidase molecules. Under these conditions, the rate constant for intramolecular electron transfer from type 1 Cu(I) to type 3 Cu(II) increases 5-fold to 1100 +/- 300 s-1 (20 degrees C, pH 5.8) as compared to that of the same process under anaerobic conditions. This observation constitutes evidence for control of the internal electron transfer process by one of its substrates. The structural and functional significance of these findings are discussed.


Subject(s)
Ascorbate Oxidase/chemistry , Oxygen/chemistry , Copper/chemistry , Electron Transport , Kinetics , Oxidation-Reduction , Pulse Radiolysis
14.
Biophys Chem ; 50(1-2): 203-16, 1994 May.
Article in English | MEDLINE | ID: mdl-8011935

ABSTRACT

Intramolecular long-range electron transfer (ET) processes have been investigated in two types of blue copper proteins; the single-copper protein, azurin and the multi-copper oxidase, ascorbate oxidase. These have several advantages for investigating the parameters that control the above reactions: (1) Their sole physiological role is mediating or catalyzing ET processes via the evolutionary optimized copper sites. (2) The three-dimensional structures of a considerable number of blue single copper containing proteins, e.g. azurins, and of ascorbate oxidase, have been determined at high resolution. (3) These proteins have no other cofactors except for the copper ions, thus the role of the polypeptide matrix can be addressed in a more straightforward manner. In azurins, the ET from the cystine (3-26) radical-ion produced by pulse-radiolytic reduction of this single disulfide bridge, to the Cu(II) ion bound at a distance of approximately 2.6 nm has been studied, in naturally occurring and in single-site mutated azurins. The role of changing specific amino acid residues on the internal long-range electron transfer (LRET) process and its potential pathways has been investigated. It is noteworthy that this process is most probably not part of the physiological function of azurin, hence, there has not been any evolutionary selection of structural elements for the reaction. Therefore, this provides a system for an unbiased examination of structural and chemical requirements for control of this process. By contrast, in blue copper oxidases, the internal ET from the electron uptake site from substrate to the O2 reduction site is part of these enzymes catalytic cycle, presumably optimized by selective pressure. We are investigating this internal ET in ascorbate oxidase and try to resolve the relation between this enzyme's distinct functional states and the internal ET rates. We conclude that in both types of proteins, the investigated LRET proceed primarily along covalent pathways, thus providing suitable systems where the parameters controlling the efficiency of these processes can be pursued.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Models, Biological , Models, Chemical , Ascorbate Oxidase/chemistry , Ascorbate Oxidase/metabolism , Azurin/chemistry , Azurin/metabolism , Electron Transport , Macromolecular Substances , Oxidation-Reduction , Protein Conformation
15.
Biochemistry ; 32(28): 7317-22, 1993 Jul 20.
Article in English | MEDLINE | ID: mdl-8343521

ABSTRACT

Single-site mutants of the blue, single-copper protein, azurin, from Pseudomonas aeruginosa were reduced by CO2- radicals in pulse radiolysis experiments. The single disulfide group was reduced directly by CO2- with rates similar to those of the native protein [Farver, O., & Pecht, I. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6968-6972]. The RSSR- radical produced in the above reaction was reoxidized in a slower intramolecular electron-transfer process (30-70 s-1 at 298 K) concomitant with a further reduction of the Cu(II) ion. The temperature dependence of the latter rates was determined and used to derive information on the possible effects of the mutations. The substitution of residue Phe114, situated on the opposite side of Cu relative to the disulfide, by Ala resulted in a rate increase by a factor of almost 2. By assuming that this effect is only due to an increase in driving force, lambda = 135 kJ mol-1 for the reorganization energy was derived. When Trp48, situated midway between the donor and the acceptor, was replaced by Leu or Met, only a small change in the rate of intramolecular electron transfer was observed, indicating that the aromatic residue in this position is apparently only marginally involved in electron transfer in wild-type azurin. Pathway calculations also suggest that a longer, through-backbone path is more efficient than the shorter one involving Trp48. The former pathway yields an exponential decay factor, beta, of 6.6 nm-1. Another mutation, raising the electron-transfer driving force, was produced by changing the Cu ligand Met121 to Leu, which increases the reduction potential by 100 mV.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Azurin/chemistry , Azurin/genetics , Electron Transport , Free Radicals , Models, Molecular , Mutagenesis, Site-Directed , Pseudomonas aeruginosa/chemistry , Temperature
16.
Proc Natl Acad Sci U S A ; 90(12): 5443-5, 1993 Jun 15.
Article in English | MEDLINE | ID: mdl-8516286

ABSTRACT

Electronic coupling between the copper atoms in an azurin dimer has been calculated in this conformationally well-defined system by using many-electronic wave functions. When one of the two water molecules forming intermolecular hydrogen bonds between the copper-ligating His-117 of the two azurins is removed, the calculated coupling element is reduced from 2.5 x 10(-6) to 1.1 x 10(-7) eV (1 eV = 1.602 x 10(-19) J). Also, the effects of the relative orientations of the two water molecules have been analyzed. The results show that water molecules may play an important role as switches for biological electron transfer. The rate of electron self-exchange between two azurins has been calculated, and the result is in very good agreement with the rate found experimentally.


Subject(s)
Azurin/metabolism , Protein Conformation , Pseudomonas aeruginosa/metabolism , Azurin/chemistry , Electrons , Kinetics , Models, Molecular , Thermodynamics , X-Ray Diffraction
17.
Eur J Biochem ; 210(2): 399-403, 1992 Dec 01.
Article in English | MEDLINE | ID: mdl-1459124

ABSTRACT

An intramolecular electron-transfer process has previously been shown to take place between the Cys3--Cys26 radical-ion (RSSR-) produced pulse radiolytically and the Cu(II) ion in the blue single-copper protein, azurin [Farver, O. & Pecht, I. (1989) Proc. Natl Acad. Sci. USA 86, 6868-6972]. To further investigate the nature of this long-range electron transfer (LRET) proceeding within the protein matrix, we have now investigated it in two azurins where amino acids have been substituted by single-site mutation of the wild-type Pseudomonas aeruginosa azurin. In one mutated protein, a methionine residue (Met44) that is proximal to the copper coordination sphere has been replaced by a positively charged lysyl residue ([M44K]azurin), while in the second mutant, another residue neighbouring the Cu-coordination site (His35) has been replaced by a glutamine ([H35Q]azurin). Though both these substitutions are not in the microenvironment separating the electron donor and acceptor, they were expected to affect the LRET rate because of their effect on the redox potential of the copper site and thus on the driving force of the reaction, as well as on the reorganization energies of the copper site. The rate of intramolecular electron transfer from RSSR- to Cu(II) in the wild-type P. aeruginosa azurin (delta G degrees = -68.9 kJ/mol) has previously been determined to be 44 +/- 7 s-1 at 298 K, pH 7.0. The [M44K]azurin mutant (delta G degrees = -75.3 kJ/mol) was now found to react considerably faster (k = 134 +/- 12 s-1 at 298 K, pH 7.0) while the [H35Q]azurin mutant (delta G degrees = -65.4 kJ/mol) exhibits, within experimental error, the same specific rate (k = 52 +/- 11 s-1, 298 K, pH 7.0) as that of the wild-type azurin. From the temperature dependence of these LRET rates the following activation parameters were calculated: delta H++ = 37.9 +/- 1.3 kJ/mol and 47.2 +/- 0.7 kJ/mol and delta S++ = -86.5 +/- 5.8 J/mol.K and -46.4 +/- 4.4 J/mol.K for [H35Q]azurin and [M44K]azurin, respectively. Using the Marcus relation for intramolecular electron transfer and the above parameters we have determined the reorganization energy, lambda and electronic coupling factor, beta. The calculated values fit very well with a through-bond LRET mechanism.


Subject(s)
Azurin/metabolism , Pseudomonas aeruginosa/chemistry , Azurin/chemistry , Copper/metabolism , Cysteine/metabolism , Electron Transport , Hydrogen Bonding , Hydrogen-Ion Concentration , Kinetics , Molecular Structure , Mutagenesis , Spectrophotometry , Thermodynamics
18.
Proc Natl Acad Sci U S A ; 89(17): 8283-7, 1992 Sep 01.
Article in English | MEDLINE | ID: mdl-1518859

ABSTRACT

Anaerobic reduction kinetics of the zucchini squash ascorbate oxidase (AO; L-ascorbate:oxygen oxidoreductase, EC 1.10.3.3) by pulse radiolytically produced CO2- radical ions were investigated. Changes in the absorption bands of type 1 [Cu(II)] (610 nm) and type 3 [Cu(II)] (330 nm) were monitored over a range of reactant concentrations, pH, and temperature. The direct bimolecular reduction of type 1 [Cu(II)] [(1.2 +/- 0.2) x 10(9) M-1.s-1] was followed by its subsequent reoxidation in three distinct phases, all found to be unimolecular processes with the respective specific rates of 201 +/- 8, 20 +/- 4, and 2.3 +/- 0.2 s-1 at pH 5.5 and 298 K. While at this pH no direct bimolecular reduction was resolved in the 330-nm band, at pH 7.0 such a direct process was observed [(6.5 +/- 1.2) x 10(8) M-1.s-1]. In the same slower time domains where type 1 [Cu(I)] reoxidation was monitored, reduction of type 3 [Cu(II)] was observed, which was also concentration independent and with identical rate constants and amplitudes commensurate with those of type 1 [Cu(II)] reoxidation. These results show that after electron uptake by type 1 [Cu(II)], its reoxidation takes place by intramolecular electron transfer to type 3 [Cu(II)]. The observed specific rates are similar to values reported for the limiting-rate constants of AO reduction by excess substrate, suggesting that internal electron transfer is the rate-determining step of AO activity. The temperature dependence of the intramolecular electron transfer rate constants was measured from 275 to 308 K at pH 5.5 and, from the Eyring plots, low activation enthalpies were calculated--namely, 9.1 +/- 1.1 and 6.8 +/- 1.0 kJ.mol-1 for the fastest and slowest phases, respectively. The activation entropies observed for these respective phases were -170 +/- 9 and -215 +/- 16 J.K-1.mol-1. The exceptionally low enthalpy barriers imply the involvement of highly optimized electron transfer pathways for internal electron transfer.


Subject(s)
Ascorbate Oxidase/chemistry , Amino Acid Sequence , Copper/chemistry , Kinetics , Molecular Sequence Data , Molecular Structure , Oxidation-Reduction , Plants/enzymology , Spectrum Analysis , Thermodynamics
19.
FASEB J ; 5(11): 2554-9, 1991 Aug.
Article in English | MEDLINE | ID: mdl-1868979

ABSTRACT

Electron migration between and within proteins is one of the most prevalent forms of biological energy conversion processes. Electron transfer reactions take place between active centers such as transition metal ions or organic cofactors over considerable distances at fast rates and with remarkable specificity. The electron transfer is attained through weak electronic interaction between the active sites, so that considerable research efforts are centered on resolving the factors that control the rates of long-distance electron transfer reactions in proteins. These factors include (in addition to the distance and nature of the microenvironment separating the reactants) thermodynamic driving force and the configurational changes required upon reaction. Several of these aspects are addressed in this review, which is based primarily on recent work performed by the authors on model systems of blue copper-containing proteins. These proteins serve almost exclusively in electron transfer reactions, and as it turns out, their metal coordination sites are endowed with properties uniquely optimized for their function.


Subject(s)
Bacterial Proteins/chemistry , Electron Transport , Azurin/chemistry , Protein Conformation , Pseudomonas/metabolism
20.
Biochem J ; 274 ( Pt 3): 739-44, 1991 Mar 15.
Article in English | MEDLINE | ID: mdl-2012602

ABSTRACT

Several amidated biologically active peptides such as pancreastatin, thyrotropin-releasing hormone, pancreatic polypeptide and amylin are produced in endocrine pancreatic tissue which contains the enzyme necessary for their final processing, i.e. peptidylglycine alpha-amidating mono-oxygenase (EC 1.14.17.3). The enzyme needs ascorbic acid for activity as well as copper and molecular oxygen. The present work shows that pancreatic islet cells prepared from overnight cultures of isolated islets from 5-7-day-old rats accumulate 14C-labelled ascorbic acid by a Na(+)-dependent active transport mechanism which involves a saturable process (estimated Km 17.6 microM). Transport was inhibited by ouabain, phloridzin, cytochalasin B, amiloride and probenecid. Glucose inhibited or stimulated uptake, depending on the length of incubation time of the cells. The uptake of dehydroascorbic acid was linearly dependent on concentration. Dehydroascorbic acid was converted to ascorbic acid by an unknown mechanism after uptake. The uptake of both ascorbic acid and dehydroascorbic acid was inhibited by tri-iodothyronine, and uptake of ascorbic acid, but not of dehydroascorbic acid, was inhibited by glucocorticoids. Isolated secretory granules contained a fairly low concentration of iron but a high concentration of copper.


Subject(s)
Ascorbic Acid/metabolism , Dehydroascorbic Acid/metabolism , Islets of Langerhans/metabolism , Animals , Animals, Newborn , Biological Transport , Cytoplasmic Granules/metabolism , Glucocorticoids/pharmacology , Glucose/pharmacology , In Vitro Techniques , Ions , Islets of Langerhans/drug effects , Metals , Rats , Rats, Inbred Strains
SELECTION OF CITATIONS
SEARCH DETAIL
...