Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Space Phys ; 125(4): e2019JA027665, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32714734

ABSTRACT

On 5 May 2017, MMS observed a crater-type flux rope on the dawnside tailward magnetopause with fluctuations. The boundary-normal analysis shows that the fluctuations can be attributed to nonlinear Kelvin-Helmholtz (KH) waves. Reconnection signatures such as flow reversals and Joule dissipation were identified at the leading and trailing edges of the flux rope. In particular, strong northward electron jets observed at the trailing edge indicated midlatitude reconnection associated with the 3-D structure of the KH vortex. The scale size of the flux rope, together with reconnection signatures, strongly supports the interpretation that the flux rope was generated locally by KH vortex-induced reconnection. The center of the flux rope also displayed signatures of guide-field reconnection (out-of-plane electron jets, parallel electron heating, and Joule dissipation). These signatures indicate that an interface between two interlinked flux tubes was undergoing interaction, causing a local magnetic depression, resulting in an M-shaped crater flux rope, as supported by reconstruction.

2.
J Geophys Res Space Phys ; 123(12): 10109-10123, 2018 Dec.
Article in English | MEDLINE | ID: mdl-31008003

ABSTRACT

A simple Monte Carlo model is presented that considers the effects of spacecraft orbital sampling on the inferred distribution of magnetic flux ropes, generated through magnetic reconnection in the magnetotail current sheet. When generalized, the model allows the determination of the number of orbits required to constrain the underlying population of structures: It is able to quantify this as a function of the physical parameters of the structures (e.g., azimuthal extent and probability of generation). The model is shown adapted to the Hermean magnetotail, where the outputs are compared to the results of a recent survey. This comparison suggests that the center of Mercury's neutral line is located dawnward of midnight by 0 . 3 7 - 1 . 02 + 1 . 21 R M and that the flux ropes are most likely to be wide azimuthally (∼50% of the width of the Hermean tail). The downtail location of the neutral line is not self-consistent or in agreement with previous (independent) studies unless dissipation terms are included planetward of the reconnection site; potential physical explanations are discussed. In the future the model could be adapted to other environments, for example, the dayside magnetopause or other planetary magnetotails.

3.
J Geophys Res Space Phys ; 123(12): 10124-10138, 2018 Dec.
Article in English | MEDLINE | ID: mdl-31008004

ABSTRACT

A Monte Carlo method of investigating the effects of placing selection criteria on the magnetic signature of in situ encounters with flux ropes is presented. The technique is applied to two recent flux rope surveys of MESSENGER data within the Hermean magnetotail. It is found that the different criteria placed upon the signatures will preferentially identify slightly different subsets of the underlying population. Quantifying the selection biases first allows the distributions of flux rope parameters to be corrected, allowing a more accurate estimation of the intrinsic distributions. This is shown with regard to the distribution of flux rope radii observed. When accounting for the selection criteria, the mean radius of Hermean magnetotail quasi-force-free flux ropes is found to be 58 9 - 269 + 273  km. Second, it is possible to weight the known identifications in order to determine a rate of recurrence that accounts for the presence of the structures that will not be identified. In the case of the Hermean magnetotail, the average rate of quasi-force-free flux ropes is found to 0.12 min-1 when selection effects are accounted for (up from 0.05 min-1 previously inferred from observations).

4.
Science ; 346(6216): 1506-10, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25525244

ABSTRACT

The structure of Earth's magnetosphere is poorly understood when the interplanetary magnetic field is northward. Under this condition, uncharacteristically energetic plasma is observed in the magnetotail lobes, which is not expected in the textbook model of the magnetosphere. Using satellite observations, we show that these lobe plasma signatures occur on high-latitude magnetic field lines that have been closed by the fundamental plasma process of magnetic reconnection. Previously, it has been suggested that closed flux can become trapped in the lobe and that this plasma-trapping process could explain another poorly understood phenomenon: the presence of auroras at extremely high latitudes, called transpolar arcs. Observations of the aurora at the same time as the lobe plasma signatures reveal the presence of a transpolar arc. The excellent correspondence between the transpolar arc and the trapped closed flux at high altitudes provides very strong evidence of the trapping mechanism as the cause of transpolar arcs.

5.
Phys Rev Lett ; 102(7): 075005, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19257682

ABSTRACT

New investigations have renewed the debate on the occurrence of magnetic reconnection of Earth's dayside magnetopause. Here, we show for the first time strong evidence for a high-latitude reconnection site, located on initially closed field lines, where the magnetic field orientations inside and outside the magnetopause are close to antiparallel. The evidence centers on repeated sampling of the ion diffusion region and associated null magnetic field by four spacecraft in formation, together with simultaneous monitoring of the local magnetosheath behavior by a fifth spacecraft.

SELECTION OF CITATIONS
SEARCH DETAIL
...