Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Ther Adv Gastrointest Endosc ; 14: 2631774521990623, 2021.
Article in English | MEDLINE | ID: mdl-33718871

ABSTRACT

INTRODUCTION: The Mayo Clinic Endoscopic Subscore is a commonly used grading system to assess the severity of ulcerative colitis. Correctly grading colonoscopies using the Mayo Clinic Endoscopic Subscore is a challenging task, with suboptimal rates of interrater and intrarater variability observed even among experienced and sufficiently trained experts. In recent years, several machine learning algorithms have been proposed in an effort to improve the standardization and reproducibility of Mayo Clinic Endoscopic Subscore grading. METHODS: Here we propose an end-to-end fully automated system based on deep learning to predict a binary version of the Mayo Clinic Endoscopic Subscore directly from raw colonoscopy videos. Differently from previous studies, the proposed method mimics the assessment done in practice by a gastroenterologist, that is, traversing the whole colonoscopy video, identifying visually informative regions and computing an overall Mayo Clinic Endoscopic Subscore. The proposed deep learning-based system has been trained and deployed on raw colonoscopies using Mayo Clinic Endoscopic Subscore ground truth provided only at the colon section level, without manually selecting frames driving the severity scoring of ulcerative colitis. RESULTS AND CONCLUSION: Our evaluation on 1672 endoscopic videos obtained from a multisite data set obtained from the etrolizumab Phase II Eucalyptus and Phase III Hickory and Laurel clinical trials, show that our proposed methodology can grade endoscopic videos with a high degree of accuracy and robustness (Area Under the Receiver Operating Characteristic Curve = 0.84 for Mayo Clinic Endoscopic Subscore ⩾ 1, 0.85 for Mayo Clinic Endoscopic Subscore ⩾ 2 and 0.85 for Mayo Clinic Endoscopic Subscore ⩾ 3) and reduced amounts of manual annotation. PLAIN LANGUAGE SUMMARY: Patient, caregiver and provider thoughts on educational materials about prescribing and medication safety Artificial intelligence can be used to automatically assess full endoscopic videos and estimate the severity of ulcerative colitis. In this work, we present an artificial intelligence algorithm for the automatic grading of ulcerative colitis in full endoscopic videos. Our artificial intelligence models were trained and evaluated on a large and diverse set of colonoscopy videos obtained from concluded clinical trials. We demonstrate not only that artificial intelligence is able to accurately grade full endoscopic videos, but also that using diverse data sets obtained from multiple sites is critical to train robust AI models that could potentially be deployed on real-world data.

2.
Nature ; 522(7557): 444-449, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26083752

ABSTRACT

Fructose is a major component of dietary sugar and its overconsumption exacerbates key pathological features of metabolic syndrome. The central fructose-metabolising enzyme is ketohexokinase (KHK), which exists in two isoforms: KHK-A and KHK-C, generated through mutually exclusive alternative splicing of KHK pre-mRNAs. KHK-C displays superior affinity for fructose compared with KHK-A and is produced primarily in the liver, thus restricting fructose metabolism almost exclusively to this organ. Here we show that myocardial hypoxia actuates fructose metabolism in human and mouse models of pathological cardiac hypertrophy through hypoxia-inducible factor 1α (HIF1α) activation of SF3B1 and SF3B1-mediated splice switching of KHK-A to KHK-C. Heart-specific depletion of SF3B1 or genetic ablation of Khk, but not Khk-A alone, in mice, suppresses pathological stress-induced fructose metabolism, growth and contractile dysfunction, thus defining signalling components and molecular underpinnings of a fructose metabolism regulatory system crucial for pathological growth.


Subject(s)
Cardiomyopathy, Hypertrophic/metabolism , Fructokinases/metabolism , Fructose/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Phosphoproteins/metabolism , Ribonucleoprotein, U2 Small Nuclear/metabolism , Alternative Splicing , Animals , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Cardiomyopathy, Hypertrophic/physiopathology , Disease Models, Animal , Fructokinases/deficiency , Fructokinases/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Isoenzymes/deficiency , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Metabolic Syndrome/metabolism , Mice , Phosphoproteins/deficiency , Phosphoproteins/genetics , RNA Splicing Factors , Ribonucleoprotein, U2 Small Nuclear/deficiency , Ribonucleoprotein, U2 Small Nuclear/genetics
3.
Int J Comput Assist Radiol Surg ; 6(1): 127-34, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20503075

ABSTRACT

PURPOSE: We present a new approach for computer-aided detection and diagnosis in mammography based on Cognition Network Technology (CNT). Originally designed for image processing, CNT has been extended to also perform context- and knowledge-driven analysis of tabular data. For the first time using this technology, an application was created and evaluated for fully automatic searching of patient cases from a reference database of verified findings. The application aims to support radiologists in providing cases of similarity and relevance to a given query case. It adopts an extensible and knowledge-driven concept as a similarity measure. METHODS: As a preprocessing step, all input images from more than 400 patients were fully automatically segmented and the resulting objects classified--this includes the complete breast shape, the position of the mammilla, the pectoral muscle, and various potential candidate objects for suspicious mass lesions. For the similarity search, collections of object properties and metadata from many patients were combined into a single table analysis project. Extended CNT allows for a convenient implementation of knowledge-based structures, for example, by meaningfully linking detected objects in different breast views that might represent identical lesions. Objects from alternative segmentation methods are also be considered, so as to collectively become a sufficient set of base-objects for identifying suspicious mass lesions. RESULTS: For 80% of 112 patient cases with suspicious lesions, the system correctly identified at least one corresponding mass lesion as an object of interest. In this database, consisting of 1,024 images from a total of 303 patients, an average of 0.66 false-positive objects per image were detected. An additional testing database contained 480 images from 120 patients, 15 of whom were annotated with suspicious mass lesions. Here, 47% (7 out of 15) of these were detected automatically with 1.13 false-positive objects per image. A diagnosis is predicted for each patient case by applying a majority vote from the reference findings of the ten most similar cases. Two separate evaluation scenarios suggest a fraction of correct predictions of respectively 79 and 76%. CONCLUSION: Cognition Network Technology was extended to process table data, making it possible to access and relate records from different images and non-image sources, such as demographic patient data or parameters from clinical examinations. A prototypal application enables efficient searching of a patient and image database for similar patient cases. Using concepts of knowledge-driven configuration and flexible extension, the application illustrates a path to a new generation of future CAD systems.


Subject(s)
Breast Neoplasms/diagnostic imaging , Mammography/methods , Radiographic Image Interpretation, Computer-Assisted/methods , User-Computer Interface , Databases, Factual , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...