Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
2.
J Colloid Interface Sci ; 671: 751-769, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38824748

ABSTRACT

Chemotherapy and surgery stand as primary cancer treatments, yet the unique traits of the tumor microenvironment hinder their effectiveness. The natural compound epigallocatechin gallate (EGCG) possesses potent anti-tumor and antibacterial traits. However, the tumor's adaptability to chemotherapy due to its acidic pH and elevated glutathione (GSH) levels, coupled with the challenges posed by drug-resistant bacterial infections post-surgery, impede treatment outcomes. To address these challenges, researchers strive to explore innovative treatment strategies, such as multimodal combination therapy. This study successfully synthesized Cu-EGCG, a metal-polyphenol network, and detailly characterized it by using synchrotron radiation and high-resolution mass spectrometry (HRMS). Through chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT), Cu-EGCG showed robust antitumor and antibacterial effects. Cu+ in Cu-EGCG actively participates in a Fenton-like reaction, generating hydroxyl radicals (·OH) upon exposure to hydrogen peroxide (H2O2) and converting to Cu2+. This Cu2+ interacts with GSH, weakening the oxidative stress response of bacteria and tumor cells. Density functional theory (DFT) calculations verified Cu-EGCG's efficient GSH consumption during its reaction with GSH. Additionally, Cu-EGCG exhibited outstanding photothermal conversion when exposed to 808 nm near-infrared (NIR) radiation and produced singlet oxygen (1O2) upon laser irradiation. In both mouse tumor and wound models, Cu-EGCG showcased remarkable antitumor and antibacterial properties.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Catechin , Copper , Nanocomposites , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Copper/chemistry , Copper/pharmacology , Nanocomposites/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Animals , Mice , Humans , Catechin/chemistry , Catechin/pharmacology , Catechin/analogs & derivatives , Microbial Sensitivity Tests , Drug Resistance, Bacterial/drug effects , Photochemotherapy , Wound Infection/drug therapy , Wound Infection/pathology , Wound Infection/microbiology , Drug Screening Assays, Antitumor , Staphylococcus aureus/drug effects , Photothermal Therapy , Particle Size , Escherichia coli/drug effects , Cell Survival/drug effects , Cell Line, Tumor , Surface Properties , Cell Proliferation/drug effects
3.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1494-1505, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621933

ABSTRACT

Mentha canadensis is a traditional Chinese herb with great medicinal and economic value. Abscisic acid(ABA) receptor PYLs have important roles in plant growth and development and response to adversity. The M. canadensis McPYL4 gene was cloned, and its protein characteristics, gene expression, and protein interactions were analyzed, so as to provide genetic resources for genetic improvement and molecular design breeding for M. canadensis resistance. Therefore, the protein characteristics, subcellular localization, gene expression pattern, and protein interactions of McPYL4 were analyzed by bioinformatics analysis, transient expression of tobacco leaves, RT-qPCR, and yeast two-hybrid(Y2H) techniques. The results showed that the McPYL4 gene was 621 bp in length, encoding 206 amino acids, and its protein had the conserved structural domain of SRPBCC and was highly homologous with Salvia miltiorrhiza SmPYL4. McPYL4 protein was localized to the cell membrane and nucleus. The McPYL4 gene was expressed in all tissue of M. canadensis, with the highest expression in roots, followed by leaves, and it showed a pattern of up-regulation followed by down-regulation in leaves 1-8. In both leaves and roots, the McPYL4 gene responded to the exogenous hormones ABA, MeJA, and the treatments of drought, AlCl_3, NaCl, CdCl_2, and CuCl_2. Moreover, McPYL4 was up-regulated for expression in both leaves and roots under the MeJA treatment, as well as in leaves treated with AlCl_3 stress for 1 h, whereas McPYL4 showed a tendency to be down-regulated in both leaves and roots under other treatments. Protein interactions showed that McPYL4 interacted with AtABI proteins in an ABA-independent manner. This study demonstrated that McPYL4 responded to ABA, JA, and several abiotic stress treatments, and McPYL4 was involved in ABA signaling in M. canadensis and thus in the regulation of leaf development and various abiotic stresses in M. canadensis.


Subject(s)
Abscisic Acid , Mentha , Abscisic Acid/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Droughts
5.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5172-5180, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114107

ABSTRACT

Excessive application of chemical fertilizer has caused many problems in Angelica dahurica var. formosana planting, such as yield decline and quality degradation. In order to promote the green cultivation mode of A. dahurica var. formosana and explore rhizosphere fungus resources, the rhizosphere fungi with nitrogen fixation, phosphorus solubilization, potassium solubilization, iron-producing carrier, and IAA-producing properties were isolated and screened in the rhizosphere of A. dahurica var. formosana from the genuine and non-genuine areas, respectively. The strains were identified comprehensively in light of the morphological characteristics and ITS rDNA sequences, and the growth-promoting effect of the screened strains was verified by pot experiment. The results showed that 37 strains of growth-promoting fungi were isolated and screened from the rhizosphere of A. dahurica var. formosana, mostly belonging to Fusarium. The cultured rhizosphere growth-promoting fungi of A. dahurica var. formosana were more abundant and diverse in the genuine producing areas than in the non-genuine producing areas. Among all strains, Aspergillus niger ZJ-17 had the strongest growth promotion potential. Under the condition of no fertilization outdoors, ZJ-17 inoculation significantly promoted the growth, yield, and accumulation of effective components of A. dahurica var. formosana planted in the soil of genuine and non-genuine producing areas, with yield increases of 73.59% and 37.84%, respectively. To a certain extent, it alleviated the restriction without additional fertilization on the growth of A. dahurica var. formosana. Therefore, A. niger ZJ-17 has great application prospects in increasing yield and quality of A. dahurica var. formosana and reducing fertilizer application and can be actually applied in promoting the growth of A. dahurica var. formosana and producing biofertilizer.


Subject(s)
Angelica , Fertilizers , Rhizosphere , Angelica/chemistry , Fungi/genetics , Phosphorus
6.
PeerJ ; 11: e15997, 2023.
Article in English | MEDLINE | ID: mdl-37692115

ABSTRACT

Background: Rhizosphere bacteria play important roles in plant growth and secondary metabolite accumulation. Moreover, only with favorable production areas and desirable germplasm can high-yield and high-quality medicinal materials be produced. However, whether origin and germplasm indirectly affect the yield and quality of Angelica dahurica var. formosana through rhizosphere bacterial effects are not known. Methods: In this study, a high-throughput sequencing strategy was used to explore the relationship between the rhizosphere bacterial community and the cultivation of A. dahurica var. formosana from different production areas and germplasm for the first time. Results: (1) Proteobacteria was the dominant bacterial phylum in the rhizosphere soil of A. dahurica var. formosana, and these bacteria were stable and conserved to a certain extent. (2) High abundance of Proteobacteria was an important rhizospheric indicator of high yield, and high abundance of Firmicutes was an important indicator of high quality. Proteobacteria and Firmicutes might have an important relationship with the yield and quality of A. dahurica var. formosana, respectively. (3) PCoA cluster analysis demonstrated that both production area and germplasm affected the bacterial community structure in the rhizosphere of A. dahurica var. formosana to a certain extent, and production area had the greatest effect. In addition to available potassium, the rhizosphere soil nutrient levels of different production areas strongly affected the bacterial diversity and community. These findings provide a theoretical basis for the exploitation and utilization of rhizosphere microbial resources of A. dahurica var. formosana and offer a novel approach for increasing the yield and quality of this crop.


Subject(s)
Angelica , Gastropoda , Animals , Rhizosphere , Bacteria/genetics , Proteobacteria/genetics , Firmicutes , Soil
7.
Food Chem ; 409: 135255, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36586268

ABSTRACT

In this work, a fluorescence/colorimetric dual-mode detection method based on MnO2 nanoflower-decorated upconversion nanoparticles: NaYF4:Yb/Er@polyvinylpyrrolidone@MnO2 (UCNP@PVP@MnO2) was proposed to detect the presence of mancozeb (MB). In this detection system, the MnO2 nanoflowers in the nanocomplex of UCNP@PVP@MnO2 would quench the fluorescence of the UCNP. With the addition of H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB), the reaction between MnO2 and H2O2 resulted in the dissolution of MnO2 and the dissolution of the MnO2 layer contributed to the fluorescence recovery of UCNP. Simultaneously, MnO2 oxidized the colorless TMB to a blue product oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB). The blue solution was able to quench the recovered fluorescence of UCNP due to the fluorescence inter filter effect (IFE) between the UCNP and blue oxTMB. Finally, with the addition of MB, the oxTMB was reduced to TMB by MB and the color of the solution became lighter while the fluorescence intensity of the solution increased. The detection method had a good linear range of 5-120 µM and 0.5-60 µM for fluorescence and colorimetric detection, respectively, and the limits of detection (LOD) were 2.34 and 0.245 µM, respectively.


Subject(s)
Manganese Compounds , Oxides , Hydrogen Peroxide , Colorimetry/methods
8.
Hepatology ; 77(1): 48-64, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35262957

ABSTRACT

BACKGROUND AND AIMS: Type 3 innate lymphoid cells (ILC3s) are essential for host defense against infection and tissue homeostasis. However, their role in the development of HCC has not been adequately confirmed. In this study, we investigated the immunomodulatory role of short-chain fatty acids (SCFAs) derived from intestinal microbiota in ILC3 regulation. APPROACH AND RESULTS: We report that Lactobacillus reuteri was markedly reduced in the gut microbiota of mice with HCC, accompanied by decreased SCFA levels, especially acetate. Additionally, transplantation of fecal bacteria from wild-type mice or L. reuteri could promote an anticancer effect, elevate acetate levels, and reduce IL-17A secretion in mice with HCC. Mechanistically, acetate reduced the production of IL-17A in hepatic ILC3s by inhibiting histone deacetylase activity, increasing the acetylation of SRY (sex-determining region Y)-box transcription factor 13 (Sox13) at site K30, and decreasing expression of Sox13. Moreover, the combination of acetate with programmed death 1/programmed death ligand 1 blockade significantly enhanced antitumor immunity. Consistently, tumor-infiltrating ILC3s correlated with negative prognosis in patients with HCC, which could be functionally mediated by acetate. CONCLUSIONS: These findings suggested that modifying bacteria, changing SCFAs, reducing IL-17A-producing ILC3 infiltration, and combining with immune checkpoint inhibitors will contribute to the clinical treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Gastrointestinal Microbiome , Liver Neoplasms , Mice , Animals , Interleukin-17 , Immunity, Innate , Carcinoma, Hepatocellular/metabolism , Lymphocytes , Liver Neoplasms/metabolism , Fatty Acids, Volatile/metabolism , Acetates
9.
Neuropsychiatr Dis Treat ; 18: 1329-1340, 2022.
Article in English | MEDLINE | ID: mdl-35813610

ABSTRACT

Purpose: Neuropsychiatric systemic lupus erythematosus (NPSLE) is the main cause of disability and death in systemic lupus erythematosus (SLE). It can cause cognitive impairment and organic brain syndrome. Brain-reactive antibodies, such as anti-DNA/anti-N-methyl-D-aspartate receptor (NMDAR) antibodies (DNRAbs), anti-microtubule-associated protein 2 (anti-MAP2) antibodies, and anti-glial fibrillary acidic protein (anti-GFAP) antibodies are thought to participate in the progression of NPSLE and thus considered potential diagnostic biomarkers, but whether they can be used for evaluating therapeutic efficacy in NPSLE is unknown. Patients and methods: Overall, 17 NPSLE patients and 10 non-SLE controls were included in this study. All the patients were treated with glucocorticoid (GC) pulse therapy. Serum and cerebrospinal fluid (CSF) concentrations of DNRAbs and anti-MAP2 and anti-GFAP antibodies were measured using enzyme-linked immunosorbent assay. The differences between the CSF concentrations of these antibodies in NPSLE patients before and after GC pulse therapy were analyzed. Results: CSF concentrations of DNRAbs and anti-MAP2 and anti-GFAP antibodies were significantly higher in NPSLE patients compared to the non-SLE controls. Among the patients, CSF concentration of DNRAbs was significantly higher in the patients with acute confusional state (ACS) than in those with non-ACS diffuse NPSLE or focal NPSLE. Additionally, CSF concentration of DNRAbs was significantly correlated with QIgG (r=0.4884, P=0.0467) and IgG index (r=0.5319, P=0.0280) in NPSLE patients. Moreover, CSF concentrations of DNRAbs, anti-MAP2, and anti-GFAP antibodies and QIgG were significantly decreased after GC pulse therapy in NPSLE patients. Conclusion: These results indicate that CSF DNRAbs and anti-MAP2 and anti-GFAP antibodies are potential biomarkers for evaluating therapeutic efficacy in NPSLE.

10.
J Immunother Cancer ; 10(1)2022 01.
Article in English | MEDLINE | ID: mdl-34996812

ABSTRACT

BACKGROUND: The significance of the relationship between the microbiota and diseases is increasingly being recognized. However, the characterization of tumor microbiome and their precise molecular mechanisms through which microbiota promotes hepatocellular carcinoma (HCC) development are still unclear. METHODS: The intrahepatic microbiota was investigated from tumor, normal adjacent tissues in 46 patients with HCC and normal hepatic tissues in 33 patients with hemangioma by 16S rRNA gene sequencing. Taxonomic composition differences in patients were evaluated using Linear discriminant analysis Effect Size (LefSe) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) to predict microbial functional pathways. Associations between the most relevant taxa and clinical characteristics of HCC patients were analyzed by Spearman rank correlations. The effects of microbe on hepatic stellate cells (HSCs) activation and HCC progression were examined. RESULTS: We observed intrahepatic microbiota disturbances by reduced microbial diversity in HCC. The tumor microbiota of the HCC patients with cirrhosis showed higher abundance of Stenotrophomonas maltophilia (S. maltophilia). S. maltophilia provoked senescence-associated secretory phenotype (SASP) in HSCs by activating TLR-4-mediated NF-κB signaling pathway, which in turn induced NLRP3 inflammasome complex formation and secreted various inflammatory factors in the liver, thus facilitating HCC progression in mice. Moreover, signs of SASP were also observed in the HSCs in the area of HCC with higher S. maltophilia enrichment arising in patients with cirrhosis. CONCLUSIONS: Our analysis of the hepatic microbiota revealed for the first time that patients with HCC exhibited a dysbiotic microbial community with higher S. maltophilia abundance, which induced the expression SASP factors of HSCs and cirrhosis in the liver, concurring in the process of hepatocarcinogenesis.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/genetics , Liver Neoplasms/genetics , Liver/pathology , Aging , Animals , Cell Line, Tumor , Disease Progression , Humans , Mice , Microbiota , Tumor Microenvironment
11.
Oncogene ; 41(6): 865-877, 2022 02.
Article in English | MEDLINE | ID: mdl-34862460

ABSTRACT

In many types of cancer, tumor cells prefer to use glycolysis as a major energy acquisition method. Here, we found that the 18fluoro-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-based markers were positively associated with the expression of programmed cell death ligand 1 (PD-L1), pyruvate kinase M2 (PKM2), both of which indicate poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). However, the regulatory mechanism of PD-L1 remains elusive. In this study, we confirmed that transforming growth factor-beta1 (TGF-ß1) secreted by tumor-associated macrophages (TAMs) was a key factor contributing to the expression of PD-L1 in PDAC cells by inducing the nuclear translocation of PKM2. Using co-immunoprecipitation and chromatin immunoprecipitation assays, we demonstrated that the interaction between PKM2 and signal transducer and activator of transcription 1 (STAT1) was enhanced by TGF-ß1 stimulation, which facilitated the transactivation of PD-L1 by the binding of PKM2 and STAT1 to its promoter. In vivo, PKM2 knockdown decreased PD-L1 expression in PDAC cells and inhibited tumor growth partly by promoting natural killer cell activation and function, and the combination of PD-1/PD-L1 blockade with PKM2 knockdown limited tumor growth. In conclusion, PKM2 significantly contributes to TAM-induced PD-L1 overexpression and immunosuppression, providing a novel target for immunotherapies for PDAC.


Subject(s)
Pyruvate Kinase
12.
PLoS One ; 15(9): e0239075, 2020.
Article in English | MEDLINE | ID: mdl-32941470

ABSTRACT

Iron (Fe) deficiency is a common challenge in crop production. Screening and research of Fe-efficient cultivars could alleviate plant stress and increase crop yields in Fe-deficient soils. In the present study, we conducted two hydroponic culture experiments with a control (100 µmol/L Fe3+-EDTA) and low Fe treatment (10 µmol/L Fe3+-EDTA) to study the morphological and physiological mechanisms of response to low Fe stress in maize hybrids seedlings. In the first experiment, we investigated 32 major maize hybrids in Southwest China. We found that six of them, including Zhenghong 2 (ZH 2), were Fe-efficient. Fifteen other cultivars, such as Chuandan 418 (CD 418), were Fe-inefficient. In the second experiment, we investigated the Fe-efficient ZH 2 and Fe-inefficient CD 418 cultivars and found that low Fe stress resulted in significant decreases in root volume, root length, number of root tips, root surface area, and root dry weight, and increased root to shoot ratio, average root diameter, and Fe-dissolution ability per mass of roots in both maize cultivars. However, the increase in Fe-dissolution ability per mass of roots in ZH 2 was higher than that in CD 418, whereas for the other measurements, the low Fe stress-induced changes in ZH 2 were less pronounced than in CD 418. Therefore, under low Fe stress, the above-mentioned growth factors in ZH 2 were higher by 54.84%, 121.46%, 107.67%, 83.96%, 140.00%, and 18.16%, respectively, than those in CD 418. In addition, leaf area, chlorophyll content, net photosynthetic rate, soluble protein content, and Catalase (CAT) and Peroxidase (POD) activities in ZH 2 were higher by 274.95%, 113.95%, 223.60%, 56.04%, 17.01% and 21.13% than those in CD 418. Therefore, compared with the Fe-inefficient cultivar (CD 418), the Fe-efficient cultivar (ZH 2) had a more developed root system and greater Fe absorption capacity per mass of roots under low iron stress, promoted the efficient absorption of Fe, maintained a higher photosynthetic area and photosynthetic rate, thereby facilitating the accumulation of photosynthetic products. Moreover, higher soluble protein content and activities of CAT and POD permitted high osmotic regulation and scavenging ability, which is an important physiological mechanism for ZH 2 adaptation to low Fe stress.


Subject(s)
Plant Roots/physiology , Seedlings/physiology , Zea mays/physiology , Iron/metabolism , Photosynthesis , Plant Roots/anatomy & histology , Seedlings/anatomy & histology , Stress, Physiological , Zea mays/anatomy & histology
13.
Gastric Cancer ; 23(6): 988-1002, 2020 11.
Article in English | MEDLINE | ID: mdl-32617693

ABSTRACT

BACKGROUND: Fibroblast growth factor receptor 1 (FGFR1) is frequently dysregulated in various tumors. FGFR inhibitors have shown promising therapeutic value in several preclinical models. However, tumors resistant to FGFR inhibitors have emerged, compromising therapeutic outcomes by demonstrating markedly aggressive metastatic progression; however, the underlying signaling mechanism of resistance remains unknown. METHODS: We established FGFR inhibitor-resistant cell models using two gastric cancer (GC) cell lines, MGC-803 and BGC-823. RNA-seq was performed to determine the continuous cellular transcriptome changes between parental and resistant cells. We explored the mechanism of resistance to FGFR inhibitor, using a subcutaneous tumor model and GC patient-derived tumor organotypic culture. RESULTS: We observed that FGFR1 was highly expressed in GC and FGFR1 inhibitor-resistant cell lines, demonstrating elevated levels of autophagic activity. These resistant cells were characterized by epithelial-mesenchymal transition (EMT) required to facilitate metastatic outgrowth. In drug-resistant cells, the FGFR1 inhibitor regulated GC cell autophagy via AMPK/mTOR signal activation, which could be blocked using either pharmacological inhibitors or essential gene knockdown. Furthermore, TGF-ß-activated kinase 1 (TAK1) amplification and metabolic restrictions led to AMPK pathway activation and autophagy. In vitro and in vivo results demonstrated that the FGFR inhibitor AZD4547 and TAK1 inhibitor NG25 synergistically inhibited proliferation and autophagy in AZD4547-resistant cell lines and patient-derived GC organotypic cultures. CONCLUSIONS: We elucidated the molecular mechanisms underlying primary resistance to FGFR1 inhibitors in GC, and revealed that the inhibition of FGFR1 and TAK1 signaling could present a potential novel therapeutic strategy for FGFR1 inhibitor-resistant GC patients.


Subject(s)
Adenocarcinoma/drug therapy , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Stomach Neoplasms/drug therapy , AMP-Activated Protein Kinases/metabolism , Animals , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Benzamides/pharmacology , Cell Culture Techniques , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Female , Humans , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Inbred BALB C , Piperazines/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Signal Transduction/drug effects
14.
J Immunother Cancer ; 8(2)2020 07.
Article in English | MEDLINE | ID: mdl-32719094

ABSTRACT

BACKGROUND: The immune response within the tumor microenvironment plays a key role in tumorigenesis and determines the clinical outcomes of head and neck squamous cell carcinoma (HNSCC). However, to date, a paucity of robust, reliable immune-related biomarkers has been identified that are capable of estimating prognosis in HNSCC patients. METHODS: High-throughput RNA sequencing was performed in tumors and matched adjacent tissues from five HNSCC patients, and the immune signatures expression of 730 immune-related transcripts selected from the nCounter PanCancer Immune Profiling Panel were assessed. Survival analyzes were performed in a training cohort, consisting of 416 HNSCC cases, retrieved from The Cancer Genome Atlas (TCGA) database. A prognostic signature was built, using elastic net-penalized Cox regression and backward, stepwise Cox regression analyzes. The outcomes were validated by an independent cohort of 115 HNSCC patients, using tissue microarrays and immunohistochemistry staining. Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was also used to estimate the relative fractions of 22 immune-cell types and their correlations coefficients with prognostic biomarkers. RESULTS: Collectively, 248 immune-related genes were differentially expressed in paired tumors and normal tissues using RNA sequencing. After process screening in the training TCGA cohort, four immune-related genes (PVR, TNFRSF12A, IL21R, and SOCS1) were significantly associated with overall survival (OS). Integrating these genes with Path_N stage, a multiplex model was built and suggested better performance in determining 5 years OS (receiver operating characteristic (ROC) analysis, area under the curve (AUC)=0.709) than others. Further protein-based validation was conducted in 115 HNSCC patients. Similarly, high expression of PVR and TNFRSF12A were associated with poor OS (Kaplan-Meier p=0.017 and 0.0032), while high expression of IL21R and SOCS1 indicated favorable OS (Kaplan-Meier p<0.0001 and =0.0018). The integrated model with Path_N stage still demonstrated efficacy in OS evaluation (Kaplan-Meier p<0.0001, ROC AUC=0.893). Besides, the four prognostic genes were significantly correlated with activated CD8+ T cells, CD4+ T cells, follicular helper T cells and regulatory T cells, implying the possible involvement of these genes in the immunoregulation and development of HNSCC. CONCLUSIONS: The well-established model encompassing both immune-related biomarkers and clinicopathological factor might serve as a promising tool for the prognostic prediction of HNSCC.


Subject(s)
Biomarkers, Tumor/genetics , Genomics/methods , Immunotherapy/methods , Squamous Cell Carcinoma of Head and Neck/genetics , Adult , Female , Humans , Male , Middle Aged , Prognosis , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Microenvironment
15.
Mol Oncol ; 14(8): 1740-1759, 2020 08.
Article in English | MEDLINE | ID: mdl-32394616

ABSTRACT

Retinoblastoma (RB) is the most common childhood malignant intraocular tumor. The clinical efficacy of vincristine (VCR) in the treatment of RB is severely limited by drug resistance. Here, we found that CD24, a GPI-anchored protein, was overexpressed in human RB tissues and RB cell lines, and was associated with the sensitivity of RB cells in response to VCR therapy. We demonstrated that CD24 plays a critical role in impairing RB sensitivity to VCR via regulating autophagy. Mechanistically, CD24 recruits PTEN to the lipid raft domain and regulates the PTEN/AKT/mTORC1 pathway to activate autophagy. Lipid raft localization was essential for CD24 recruitment function. Collectively, our findings revealed a novel role of CD24 in regulating RB sensitivity to VCR and showed that CD24 is a potential target for improving chemotherapeutic sensitivity and RB patient outcomes.


Subject(s)
Autophagy , CD24 Antigen/metabolism , Retinoblastoma/metabolism , Retinoblastoma/pathology , Vincristine/therapeutic use , Animals , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Autophagy/drug effects , Autophagy/genetics , Cell Line, Tumor , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Glycosylphosphatidylinositols/metabolism , Humans , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Mice, Inbred BALB C , Mice, Nude , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Retinoblastoma/drug therapy , Retinoblastoma/genetics , Signal Transduction/drug effects , Vincristine/pharmacology
16.
Oncogene ; 39(7): 1429-1444, 2020 02.
Article in English | MEDLINE | ID: mdl-31659256

ABSTRACT

Recently, patients with advanced cancers have been benefited greatly from immune checkpoint blockade immunotherapy. However, immune checkpoint blockade is still suboptimal in HCC treatment and more immune modifications are needed to achieve an efficient therapeutic goal. Here, we investigated the combined administration of a Listeria-based HCC vaccine, Lmdd-MPFG, and the anti-PD-1 immune checkpoint blockade antibody. We found that Lmdd-MPFG promoted the expression of PD-L1 in HCC cells but resensitized the tumor local T cell to respond to the anti-PD-1 immunotherapy. Mechanistically, the Lmdd-MPFG vaccine activates the NF-κB pathway in the tumor-associated macrophages (TAMs) through the TLR2 and MyD88 pathway, and recruits p62 to activate the autophagy pathway. The overall effect is skewing the TAMs from M2-polarized TAMs into the M1-polarized TAMs. Most importantly, it skewed the cytokine profiles into antitumor one in the tumor microenvironment (TME). This change restores the T-cell reactivity to the anti-PD-1 blockade. Our results suggested that Lmdd-MPFG combined with PD-1 blockade exerted synergistic antitumor effects through modifying TAMs in the TME and removing T-cell inhibitory signals, thereby providing a new potential strategy for HCC treatment.


Subject(s)
Cancer Vaccines/pharmacology , Carcinoma, Hepatocellular/prevention & control , Liver Neoplasms/prevention & control , Macrophages/cytology , Macrophages/drug effects , Programmed Cell Death 1 Receptor/immunology , Adult , Aged , Animals , Autophagy/drug effects , Autophagy/immunology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Female , Humans , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Macrophages/immunology , Male , Mice , Middle Aged , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 2/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
17.
PLoS One ; 14(12): e0225753, 2019.
Article in English | MEDLINE | ID: mdl-31805168

ABSTRACT

Non-structural carbohydrates (NSCs) are an important energy source for plant growth and metabolism. Analysis of NSC changes can provide important clues to reveal the adaptation mechanisms of plants to a specific environment. Although considerable differences have been reported in NSCs in response to nitrogen (N) application among crop species and cultivars, previous studies have mostly focused on the differences in leaves and stems. However, the effects of N on the characteristics of accumulation and translocation of NSC in maize with different levels of N tolerance remain unclear. To determine differences in the N levels, two cultivars (N-efficient ZH311 and N-inefficient XY508) were grown in field pots (Experiment I) and as hydroponic cultures (Experiment II) and were supplemented with different concentrations of N fertilizer. In both experiments, low-N stress significantly increased the accumulation of NSCs in maize vegetative organs and increased the translocation rate of NSCs in the stems and their apparent contribution to yield, thereby reducing the yield loss caused by low-N stress. N application had a greater effect on starch content in the vegetative organs of ZH311, but had less effect on soluble sugar (SS) and NSC content in the whole plant and starch content in the ears. ZH311 could convert more starch into SS under low N conditions to adapt to low N environments than XY508, while ensuring that grain yield and starch quantity were not affected. This is evidently an important physiological mechanism involved in this cultivar's tolerance to low N conditions.


Subject(s)
Adaptation, Physiological/drug effects , Carbohydrates/chemistry , Nitrogen/pharmacology , Zea mays/metabolism , Zea mays/physiology , Biomass , Seedlings/drug effects , Seedlings/growth & development , Soil/chemistry , Solubility , Starch/metabolism , Zea mays/drug effects , Zea mays/growth & development
18.
Oncotarget ; 7(30): 48070-48080, 2016 Jul 26.
Article in English | MEDLINE | ID: mdl-27344170

ABSTRACT

Human Herpesvirus 6 (HHV-6) has been involved in the development of several central nervous system (CNS) diseases, such as Alzheimer's disease, multiple sclerosis and glioma. In order to identify the pathogenic mechanism of HHV-6A infection, we carried out mRNA-seq study of human astrocyte HA1800 cell with HHV-6A GS infection. Using mRNA-seq analysis of HA1800-control cells with HA1800-HHV-6A GS cells, we identified 249 differentially expressed genes. After investigating these candidate genes, we found seven genes associated with two or more CNS diseases: CTSS, PTX3, CHI3L1, Mx1, CXCL16, BIRC3, and BST2. This is the first transcriptome sequencing study which showed the significant association of these genes between HHV-6A infection and neurologic diseases. We believe that our findings can provide a new perspective to understand the pathogenic mechanism of HHV-6A infection and neurologic diseases.


Subject(s)
Astrocytes/physiology , Astrocytes/virology , Herpesvirus 6, Human/physiology , Nervous System Diseases/genetics , Nervous System Diseases/virology , Roseolovirus Infections/genetics , Cell Culture Techniques , Humans , Nervous System Diseases/pathology , Transcriptome
19.
J Virol ; 88(2): 1011-24, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24198406

ABSTRACT

Human herpesvirus 6 (HHV-6) is an important immunosuppressive and immunomodulatory virus. The mechanisms by which HHV-6 establishes latency and immunosuppression in its host are not well understood. Here we characterized HHV-6-specific T cells in peripheral blood mononuclear cells (PBMCs) from HHV-6-infected donors. Our results showed that HHV-6 infection could induce both CD4(+) and CD8(+) HHV-6-specific regulatory T (Treg) cells. These HHV-6-specific Treg cells had potent suppressive activity and expressed high levels of Treg-associated molecules CD25, FoxP3, and GITR. Both CD4(+) and CD8(+) Treg cells secreted gamma interferon (IFN-γ) and interleukin-10 (IL-10) but little or no IL-2, IL-4, or transforming growth factor ß (TGF-ß). Furthermore, HHV-6-specifc Treg cells not only could suppress naive and HHV-6-specific CD4(+) effector T cell immune responses but also could impair dendritic cell (DC) maturation and functions. In addition, the suppressive effects mediated by HHV-6-specific Treg cells were mainly through a cell-to-cell contact-dependent mechanism but not through the identified cytokines. These results suggest that HHV-6 may utilize the induction of Treg cells as a strategy to escape antivirus immune responses and maintain the latency and immunosuppression in infected hosts.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Herpesvirus 6, Human/immunology , Roseolovirus Infections/immunology , T-Lymphocytes, Regulatory/immunology , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Dendritic Cells/virology , Herpesvirus 6, Human/genetics , Humans , Interferon-gamma/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Roseolovirus Infections/virology , T-Lymphocytes, Regulatory/virology
20.
Arch Virol ; 159(2): 365-70, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24013234

ABSTRACT

In this study, we demonstrate that infection of HSB-2 cells with human herpesvirus 6 (HHV-6) resulted in the accumulation of infected cells in the G2/M phase of the cell cycle. Analysis of various cell-cycle-regulatory proteins indicated that the levels of cyclins A2, B1, and E1 were increased in HHV-6-infected cells, but there was no difference in cyclin D1 levels between mock-infected and HHV-6-infected cells. Our data also showed that inducing G2/M phase arrest in cells infected by HHV-6 provided favorable conditions for viral replication.


Subject(s)
Cell Cycle , Herpesvirus 6, Human/physiology , Host-Pathogen Interactions , T-Lymphocytes/physiology , T-Lymphocytes/virology , Virus Replication , Cell Cycle Proteins/analysis , Cell Line , Humans
SELECTION OF CITATIONS
SEARCH DETAIL