Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
N Biotechnol ; 78: 84-94, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-37820831

ABSTRACT

Microalgae-based wastewater treatment has been conceived to obtain reclaimed water and produce microalgal biomass for bio-based products and biofuels generation. However, microalgal biomass harvesting is challenging and expensive, hence one of the main bottlenecks for full-scale implementation. Finding an integrated approach that covers concepts of engineering, green chemistry and the application of microbial anabolism driven towards the harvesting processes, is mandatory for the widespread establishment of full-scale microalgae wastewater treatment plants. By using nature-based substances and applying concepts of chemical functionalization in already established harvesting methods, the costs of harvesting processes could be reduced while preventing microalgae biomass contamination. Moreover, microalgae produced during wastewater treatment have unique culture characteristics, such as the consortia, which are primarily composed of microalgae and bacteria, that should be accounted for prior to downstream processing. The aim of this review is to examine recent advances in microalgal biomass harvesting and recovery in wastewater treatment systems, considering the impact of consortia variability. The costs of available harvesting technologies, such as coagulation/flocculation, coupled to sedimentation and differential air flotation, are provided. Additionally, promising technologies are discussed, including autoflocculation, bioflocculation, new filtration materials, nanotechnology, microfluidic and magnetic methods.


Subject(s)
Microalgae , Water Purification , Biomass , Biofuels , Flocculation
2.
Bioresour Technol ; 384: 129287, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37286047

ABSTRACT

This study evaluated a tertiary wastewater treatment technology using cyanobacteria to recover value-added phycobiliproteins. The presence of contaminants of emerging concern (CECs) in wastewater, cyanobacterial biomass and pigments recovered were also analyzed. For this, a wastewater-borne cyanobacterium (Synechocystis sp. R2020) was used to treat secondary effluent from a municipal wastewater treatment plant, with and without nutrients supplementation. Then, the stability of phycobiliprotein production was assessed by operating the photobioreactor in semi-continuous mode. Results showed similar biomass productivity with and without nutrients supplementation (153.5 and 146.7 mg L-1 d-1, respectively). Upon semi-continuous operation, the phycobiliprotein content was stable and reached up to 74.7 mg gDW-1. The phycocyanin purity ratio ranged from 0.5 to 0.8, corresponding to food grade (>0.7). Out of 22 CECs detected in secondary effluent, only 3 were present in the phycobiliprotein extracts. In order to identify applications, prospective research should focus on CECs removal during pigment purification.


Subject(s)
Microalgae , Synechocystis , Wastewater , Phycobiliproteins , Photobioreactors , Prospective Studies , Biomass
3.
Sci Total Environ ; 880: 163291, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37023825

ABSTRACT

The aim of this study was to assess the environmental impacts of up-flow anaerobic sludge blanket (UASB) reactors coupled with high rate algal ponds (HRAPs) for wastewater treatment and bioenergy recovery using the Life Cycle Assessment (LCA) methodology. This solution was compared with the UASB reactor coupled with other consolidated technologies in rural areas of Brazil, such as trickling filters, polishing ponds and constructed wetlands. To this end, full-scale systems were designed based on experimental data obtained from pilot/demonstrative scale systems. The functional unit was 1 m3 of water. System boundaries comprised input and output flows of material and energy resources for system construction and operation. The LCA was performed with the software SimaPro®, using the ReCiPe midpoint method. The results showed that the HRAPs scenario was the most environmentally friendly alternative in 4 out of 8 impact categories (i.e. Global warming, Stratospheric Ozone Depletion, Terrestrial Ecotoxicity and Fossil resource scarcity). This was associated with the increase in biogas production by the co-digestion of microalgae and raw wastewater, leading to higher electricity and heat recovery. From an economic point of view, despite the HRAPs showed a higher capital cost, the operation and maintenance costs were completely offset by the revenue obtained from the electricity generated. Overall, the UASB reactor coupled with HRAPS showed to be a feasible nature-based solution to be used in small communities in Brazil, especially when microalgae biomass is valorised and used to increase biogas productivity.


Subject(s)
Microalgae , Water Purification , Animals , Waste Disposal, Fluid/methods , Biofuels , Sewage , Ponds , Bioreactors , Life Cycle Stages
4.
Sci Total Environ ; 857(Pt 1): 159343, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36228791

ABSTRACT

Cyanobacteria have been identified as promising organisms to reuse nutrients from waste effluents and produce valuable compounds such as lipids, polyhydroxyalkanoates (PHAs), and pigments. However, almost all studies on cyanobacterial biorefineries have been performed under lab scale and short cultivation periods. The present study evaluates the cultivation of the cyanobacterium Synechocystis sp. in a pilot scale 30 L semi-continuous photobioreactor fed with secondary effluent for a period of 120 days to produce phycobiliproteins, polyhydroxybutyrate (PHB) and lipids. To this end, the harvested biomass from the semi-continuous photobioreactor was transferred into 5 L vertical column batch photobioreactors to perform PHB and lipid accumulation under nutrient starvation. Three hydraulic retention times (HRT) (6, 8 and 10 days) were tested in the semi-continuous photobioreactor to evaluate its influence on biomass growth and microbial community. A maximum biomass concentration of 1.413 g L-1 and maximum productivity of 173 mg L-1 d-1 was reached under HRT of 8 days. Microscopy analysis revealed a shift from Synechocystis sp. to Leptolyngbya sp. and green algae when HRT of 6 days was used. Continuous, stable production of phycobiliproteins in the semi-continuous photobioreactor was obtained, reaching a maximum content of 7.4%dcw in the biomass. In the batch photobioreactors a PHB content of 4.8%dcw was reached under 7 days of nitrogen and phosphorus starvation, while a lipids content of 44.7%dcw was achieved under 30 days of nitrogen starvation. PHB and lipids production was strongly dependent on the amount of nutrients withdrawn from the grow phase. In the case of lipids, their production was stimulated when there was only phosphorus depletion. While Nitrogen and phosphorus limitation was needed to enhance the PHB production. In conclusion, this study demonstrates the feasibility of cultivating cyanobacteria in treated wastewater to produce bio-based valuable compounds within a circular bioeconomy approach.


Subject(s)
Microalgae , Synechocystis , Phycobiliproteins , Biomass , Wastewater , Phosphorus , Nitrogen , Lipids
5.
J Environ Manage ; 324: 116397, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36208519

ABSTRACT

Selenium (Se) and zinc (Zn) are essential micronutrients that are often lacking in the diet of humans and animals. Application of mineral Se and Zn fertilizers into soils may lead to a waste of Se and Zn due to the fast leaching and low utilization by plants. Slow-release Se and Zn biofertilizer may therefore be beneficial. This study aims to assess the potential of SeZn-enriched duckweed and sludge produced from wastewater as slow-release Se and Zn biofertilizers. Pot experiments with green beans (Phaseolus vulgaris) and sampling of Rhizon soil pore water were conducted to evaluate the bioavailability of Se and Zn in sandy and loamy soils mixed with SeZn-enriched duckweed and sludge. Both the Se and Zn concentrations in the soil pore water increased upon amending the two biomaterials. The concentration of Se released from SeZn-enriched duckweed rapidly decreased in the first 21 days and slowly declined afterwards, while it remained stable during the entire experiment upon application of SeZn-enriched sludge. The Zn content in the soil pore water gradually increased over time. The application of SeZn-enriched duckweed and sludge significantly increased the Se concentrations in plant tissues, in particular in the form of organic Se-methionine in seeds, without a negative impact on plant growth when an appropriate dose was applied (1 mg Se/kg soil). While, it did not increase Zn concentrations in plant seeds. The results indicate that the SeZn-enriched duckweed and sludge could be only used as organic Se biofertilizers for Se-deficient soils. Particularly, the SeZn-enriched sludge dominated with elemental nano-Se was an effective Se source and slow-release Se biofertilizer. These results could offer a theoretical reference to choose an alternative to chemical Se fertilizers for biofortification, avoiding the problem of Se losses by leaching from mineral Se fertilizers while recovering resources from wastewater. This could contribute to the driver for a future circular economy.


Subject(s)
Araceae , Phaseolus , Selenium , Trace Elements , Humans , Animals , Zinc/analysis , Fertilizers , Sewage , Micronutrients , Wastewater , Soil/chemistry , Water
6.
J Environ Manage ; 323: 116224, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36126597

ABSTRACT

Alternatives to conventional inorganic fertilizers are needed to cope with the growing global population and contamination due to the production and use of those inorganic compounds. The recovery of nutrients from wastewater and organic wastes is a promising option to provide fertilization in a circular economy approach. In this context, microalgae-based systems are an alternative to conventional wastewater treatment systems, reducing the treatment costs and improving the sustainability of the process, while producing nutrient-rich microalgal biomass. The aim of the present study is to evaluate the use of microalgal biomass produced during domestic wastewater treatment in high rate algal ponds as a biofertilizer in basil crops (Ocimum basilicum L.). Wastewater was successfully treated, with removal efficiencies in the secondary treatment of 69, 91 and 81% in terms of chemical oxygen demand (COD), total inorganic nitrogen (TIN) and phosphates (PO43-P), respectively. The microalgal biomass, composed mainly by Scenedesmus, presented the following composition: 12% of dry weight and nutrients concentration of 7.6% nitrogen (N), 1.6% phosphorus (P) and 0.9% potassium (K). The study compared the performance of 3 different fertilizers: 1) microalgae fertilizer (MF), 2) inorganic fertilizer (IF) as positive control and 3) the combination of both microalgae and inorganic fertilizer (MF + IF). Comparable plant growth (i.e., number of leaves, shoot fresh and dry weight and leaf fresh weight) was observed among treatments, except for leaf dry weight, which was significantly higher in the IF + MF and MF treatments (28 and 27%, respectively) in comparison with the control. However, the microalgae treatment provided the lowest chlorophyll, N and K leaf content. In conclusion, this study suggests that combining microalgae grown in wastewater with an inorganic fertilizer is a promising nutrients source for basil crops, enhancing the circular bioeconomy.


Subject(s)
Microalgae , Nitrogen , Biomass , Chlorophyll , Crops, Agricultural , Fertilizers/analysis , Nitrogen/analysis , Phosphates , Phosphorus , Potassium , Wastewater/chemistry
7.
Sci Total Environ ; 851(Pt 2): 158337, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36030875

ABSTRACT

Selenium (Se) is an important element for many living organisms and its supplementation may be needed in food, feed, and soil to make up for its deficiency. At the same time, high selenium concentrations can harm the environment, thus its management in sewage and the study of its removal from waste streams are important. Microalgae-based systems may be used for wastewater treatment and nutrients recovery, while producing biomass for bioproducts or bioenergy. In this study, Chlorella vulgaris and Scenedesmus sp. grown in urban wastewater with different selenium concentrations (50-1000 µg Se/L) were evaluated for their resistance and selenium removal/recovery efficiency. Chlorella vulgaris and Scenedesmus sp. were able to remove up to 43 and 52 % of Se from wastewater, respectively. Chlorella vulgaris accumulated up to 323 mgSe/kg DW (in urban wastewater with 1000 µg Se/L). The Se-rich biomass produced may be applied to the supplementation of animal feed or used for biofortification of crops.


Subject(s)
Chlorella vulgaris , Microalgae , Scenedesmus , Selenium , Animals , Wastewater/analysis , Sewage , Biomass , Soil , Nitrogen
8.
Sci Total Environ ; 847: 157615, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35901897

ABSTRACT

The aim of this study was to assess the potential environmental impacts associated with microalgae systems for wastewater treatment and bioproducts recovery. In this sense, a Life Cycle Assessment was carried out evaluating two systems treating i) urban wastewater and ii) industrial wastewater (from a food industry), with the recovery of bioproducts (i.e. natural pigments and biofertilizer) and bioenergy (i.e. biogas). Additionally, both alternatives were compared to iii) a conventional system using a standard growth medium for microalgae cultivation in order to show the potential benefits of using wastewater compared to typical cultivation approaches. The results indicated that the system treating industrial wastewater with unialgal culture had lower environmental impacts than the system treating urban wastewater with mixed cultures. Bioproducts recovery from microalgae wastewater treatment systems can reduce the environmental impacts up to 5 times compared to a conventional system using a standard growth medium. This was mainly due to the lower chemicals consumption for microalgae cultivation. Food-industry effluent showed to be the most promising scenario for bioproducts recovery from microalgae treating wastewater, because of its better quality compared to urban wastewater which also allows the cultivation of a single microalgae species. In conclusion, microalgae wastewater treatment systems are a promising solution not only for wastewater treatment but also to boost the circular bioeconomy in the water sector through microalgae-based product recovery.


Subject(s)
Microalgae , Water Purification , Animals , Biofuels , Biomass , Life Cycle Stages , Wastewater , Water , Water Purification/methods
9.
Chemosphere ; 286(Pt 3): 131929, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34463260

ABSTRACT

Sustainable sewage treatment plants (STPs) have been intensively investigated in search for low-cost, environmental-friendly options. Anaerobic-aerobic treatment solutions, as upflow anaerobic sludge blanket (UASB) reactors followed by high rate algal ponds (HRAP) have already proved to be efficient for pollutants and micropollutants removal, as well as for energy recovery from the co-digestion of raw sewage and microalgal biomass. Since microalgae cells have complex structures that make them resistant to anaerobic digestion, pre-treatment techniques may be applied to improve microalgal biomass solubilisation and methane yield. Among the thermal pre-treatments, the use of solar energy for biomass solubilisation has yet to be investigated. Therefore, this study aimed at evaluating the performance of a solar thermal microalgal biomass pre-treatment prior to the anaerobic co-digestion with raw sewage, comparing a UASB reactor feed only raw sewage and other UASB reactor feed with raw sewage and pre-treated microalgal biomass. The results showed that, the solar pre-treatment step reached an organic matter solubilisation of 32% (COD). Furthermore, the methane yield was increased by 45% (from 81 to 117 NL CH4 kg-1 COD), after the anaerobic co-digestion with pre-treated microalgae as compared to the mono-digestion of raw sewage, indicating significant difference between the evaluated UASB reactors. The energy assessment showed a positive energy balance, as the total energy produced was twice the energy consumed in the system.


Subject(s)
Microalgae , Sewage , Anaerobiosis , Biomass , Bioreactors , Digestion , Methane , Waste Disposal, Fluid
10.
Waste Manag ; 135: 220-228, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34536680

ABSTRACT

The aim of this study is to characterize the digestates from three plastic tubular digesters implemented in Colombia fed with: i) cattle manure; ii) cattle manure mixed with cheese whey; iii) pig manure. All the digesters worked under psychrophilic conditions. Physico-chemical characteristics, heavy metals, pathogens, and agronomic quality were investigated. All the digestates were characterized by physico-chemical characteristics and nutrients concentration suitable for their reuse as biofertilizer. However, these digestates may only partially replace a mineral fertilizer due to the high nutrients dilution. Heavy metals were under the detection limit of the analytical method (Pb, Hg, Ni, Mo, Cd, Chromium VI) or present at low concentration (Cu, Zn, As, Se) in all the digestates. Biodegradable organic matter and pathogens (coliform, helminths and Salmonella spp.) analysis proved that all the digestates should be post-treated before soil application in order to prevent environmental and health risks, and also to reduce residual phytotoxicity effects. The digestate from pig manure had a higher nutrient percentage (0.2, 0.6 and 0.05 % w/w of total N, P2O5 and K2O, respectively), but also higher residual phytotoxicity than the other digestates. Co-digestion seemed not to significantly improve the digestate fertilizing potential. Finally, further studies should address how to improve fertilizing potential of digestates from plastic tubular digesters, avoiding environmental and health risks.


Subject(s)
Manure , Plastics , Anaerobiosis , Animals , Cattle , Risk Assessment , Swine
11.
Sci Total Environ ; 795: 148884, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34247071

ABSTRACT

Quantitative evidence of health and environmental tradeoffs between individuals' drinking water choices is needed to inform decision-making. We evaluated health and environmental impacts of drinking water choices using health impact and life cycle assessment (HIA, LCA) methodologies applied to data from Barcelona, Spain. We estimated the health and environmental impacts of four drinking water scenarios for the Barcelona population: 1) currently observed drinking water sources; a complete shift to 2) tap water; 3) bottled water; or 4) filtered tap water. We estimated the local bladder cancer incidence attributable to trihalomethane (THM) exposure, based on survey data on drinking water sources, THM levels, published exposure-response functions, and disability-adjusted life years (DALYs) from the Global Burden of Disease 2017. We estimated the environmental impacts (species lost/year, and resources use) from waste generation and disposal, use of electricity, chemicals, and plastic to produce tap or bottled drinking water using LCA. The scenario where the entire population consumed tap water yielded the lowest environmental impact on ecosystems and resources, while the scenario where the entire population drank bottled water yielded the highest impacts (1400 and 3500 times higher for species lost and resource use, respectively). Meeting drinking water needs using bottled or filtered tap water led to the lowest bladder cancer DALYs (respectively, 140 and 9 times lower than using tap water) in the Barcelona population. Our study provides the first attempt to integrate HIA and LCA to compare health and environmental impacts of individual water consumption choices. Our results suggest that the sustainability gain from consuming water from public supply relative to bottled water may exceed the reduced risk of bladder cancer due to THM exposure from consuming bottled water in Barcelona. Our analysis highlights several critical data gaps and methodological challenges in quantifying integrated health and environmental impacts of drinking water choices.


Subject(s)
Drinking Water , Ecosystem , Environment , Humans , Spain , Trihalomethanes/analysis
12.
Chemosphere ; 281: 130767, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34022598

ABSTRACT

Selenium (Se) is an essential trace element for humans and animals with a narrow window between deficiency and toxicity levels. Application of conventional chemical Se fertilizers to increase the Se content of crops in Se deficient areas could result in environmental contamination due to the fast leaching of inorganic Se. Slow-release Se-enriched biofertilizers produced from wastewater treatment may therefore be beneficial. In this study, the potential of Se-enriched biomaterials (sludge and duckweed) as slow-release Se biofertilizers was evaluated through pot experiments with and without planted green beans (Phaseolus vulgaris). The Se concentration in the bean tissues was 1.1-3.1 times higher when soils were amended with Se-enriched sludge as compared to Se-enriched duckweed. The results proved that the Se released from Se-enriched biomaterials was efficiently transformed to health-beneficial selenoamino acids (e.g., Se-methionine, 76-89%) after being taken up by beans. The Se-enriched sludge, containing mainly elemental Se, is considered as the preferred slow-release Se biofertilizer and an effective Se source to produce Se-enriched crops for Se-deficient populations, as shown by the higher Se bioavailability and lower organic carbon content. This study could offer a theoretical reference to choose an environmental-friendly and sustainable alternative to conventional mineral Se fertilizers for biofortification, avoiding the problem of Se losses by leaching from chemical Se fertilizers while recovering resources from wastewater. This could contribute to the driver for a future circular economy.


Subject(s)
Araceae , Selenium , Trace Elements , Animals , Fertilizers , Humans , Micronutrients , Sewage , Soil , Wastewater
13.
Bioresour Technol ; 333: 125239, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33940503

ABSTRACT

This study assessed the selenium (Se) removal efficiency of two pilot-scale high-rate algae ponds (HRAPs) treating domestic wastewater and investigated the production of Se-enriched microalgae as potential feed supplement. The HRAP-Se had an average Se, NH4+-N, total phosphorus and COD removal efficiency of, respectively, 43%, 93%, 77%, and 70%. Inorganic Se taken up by the microalgae was mainly (91%) transformed to selenoamino acids, and 49-63% of Se in the Se-enriched microalgae was bioaccessible for animals. The crude protein content (48%) of the microalgae was higher than that of soybeans, whereas the essential amino acid content was comparable. Selenium may induce the production of the polyunsaturated fatty acids omega-3 and omega-6 in microalgae. Overall, the production of Se-enriched microalgae in HRAPs may offer a promising alternative for upgrading low-value resources into high-value feed supplements, supporting the drive to a circular economy.


Subject(s)
Microalgae , Selenium , Biomass , Ponds , Wastewater
14.
ACS Sustain Chem Eng ; 8(29): 10691-10701, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32953285

ABSTRACT

This study assessed the recovery of natural pigments (phycobiliproteins) and bioenergy (biogas) from microalgae grown in wastewater. A consortium of microalgae, mainly composed by Nostoc, Phormidium, and Geitlerinema, known to have high phycobiliproteins content, was grown in photobioreactors. The growth medium was composed by secondary effluent from a high rate algal pond (HRAP) along with the anaerobic digestion centrate, which aimed to enhance the N/P ratio, given the lack of nutrients in the secondary effluent. Additionally, the centrate is still a challenging anaerobic digestion residue since the high nitrogen concentrations have to be removed before disposal. Removal efficiencies up to 52% of COD, 86% of NH4 +-N, and 100% of phosphorus were observed. The biomass composition was monitored over the experimental period in order to ensure stable cyanobacterial dominance in the mixed culture. Phycocyanin and phycoerythrin were extracted from harvested biomass, achieving maximum concentrations of 20.1 and 8.1 mg/g dry weight, respectively. The residual biomass from phycobiliproteins extraction was then used to produce biogas, with final methane yields ranging from 159 to 199 mL CH4/g VS. According to the results, by combining the extraction of pigments and the production of biogas from residual biomass, we would not only obtain high-value compounds, but also more energy (around 5-10% higher), as compared to the single recovery of biogas. The proposed process poses an example of resource recovery from biomass grown in wastewater, moving toward a circular bioeconomy.

15.
Water Sci Technol ; 81(9): 1852-1862, 2020 May.
Article in English | MEDLINE | ID: mdl-32666940

ABSTRACT

The kinetics of Se uptake and toxicity to Lemna were studied over a period of 14 days of exposure to Se(IV) or Se(VI). The growth of Lemna stopped immediately after exposure to 5.0 mg/L of Se(IV) or Se(VI). The content of chlorophyll and phaeopigments of Lemna exposed to 5.0 mg/L of Se(IV) was two to three times less than in the control after 3 d exposure. Lemna took up Se rapidly within the first 3 d. The Se content in Lemna along with the exposure time fitted well the two-compartment and the hyperbolic model, which demonstrates that the mechanism of Se(IV) and Se(VI) uptake in Lemna is not only through passive diffusion, but also through other processes such as ion channel proteins or transporters. The kinetic bioconcentration factors (BCFs) were 231 and 42 for 0.5 mg/L Se(IV) and Se(VI) exposure, respectively. The uptake rate of Lemna reached 263 mg/kg/d and 28 mg/kg/d in the Se(IV) and Se(VI) treatments, respectively. This study showed that Se(IV) has a faster accumulation rate than Se(VI), but a higher toxicity, indicating Lemna could be a good candidate to remove Se(IV) from water, producing Se-enriched biomass which may eventually also be considered for use as Se-enriched feed supplement or fertilizer.


Subject(s)
Araceae , Selenium , Biomass , Fertilizers , Selenic Acid , Selenious Acid
16.
J Hazard Mater ; 390: 121771, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32127240

ABSTRACT

The present study evaluates the removal capacity of two high rate algae ponds (HRAPs) to eliminate 12 pharmaceuticals (PhACs) and 26 of their corresponding main metabolites and transformation products. The efficiency of these ponds, operating with and without primary treatment, was compared in order to study their capacity under the best performance conditions (highest solar irradiance). Concentrations of all the target compounds were determined in both water and biomass samples. Removal rates ranged from moderate (40-60 %) to high (>60 %) for most of them, with the exception of the psychiatric drugs carbamazepine, the ß-blocking agent metoprolol and its metabolite, metoprolol acid. O-desmethylvenlafaxine, despite its very low biodegradability in conventional wastewater treatment plants, was removed to certain extent (13-39 %). Biomass concentrations suggested that bioadsorption/bioaccumulation to microalgae biomass was decisive regarding the elimination of non-biodegradable compounds such as venlafaxine and its main metabolites. HRAP treatment with and without primary treatment did not yield significant differences in terms of PhACs removal efficiency. The implementation of HRAPs as secondary treatment is a feasible alternative to CAS in terms of overall wastewater treatment, including organic micropollutants, with generally higher removal performances and implying a green, low-cost and more sustainable technology.


Subject(s)
Microalgae/metabolism , Pharmaceutical Preparations/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Adsorption , Microalgae/chemistry , Pharmaceutical Preparations/chemistry , Pilot Projects , Wastewater , Water Pollutants, Chemical/chemistry
17.
Chemosphere ; 248: 125969, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32041061

ABSTRACT

The present study evaluated the removal capacity of a UASB-HRAP treatment system, combining anaerobic and microalgae-based, aerobic treatment, for eleven organic micropollutants present in raw sewage, including pharmaceuticals, estrogens and xenoestrogens. The UASB reactor and the HRAP were operated at a hydraulic retention time (HRT) of 7 h and 8 days, respectively. Influent and effluent samples from the UASB and HRAP were collected periodically. All the target compounds were detected in raw sewage, with an occurrence ranging from 70 to 100%. Removal rates in the UASB reactor were generally incomplete, ranging from no removal (-25.12% for the hormone EE2-ethinylestradiol) to 84.91% (E2 - estradiol). However, the overall performance of the UASB + HRAP system was highly efficient for the majority of the compounds, with removal rates ranging from 64.8% (ibuprofen) to 95% (estrone). Gemfibrozil and bisphenol A were the only exceptions, with overall removal rates of 39% and 43%, respectively. Hormones were the compounds with the highest removal rates in the system.


Subject(s)
Bioreactors , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Anaerobiosis , Estrogens , Estrone , Ethinyl Estradiol , Microalgae , Ponds , Sewage
18.
Bioresour Technol ; 303: 122894, 2020 May.
Article in English | MEDLINE | ID: mdl-32032937

ABSTRACT

The aim of this study was to investigate the cultivation of Nostoc sp., Arthrospira platensis and Porphyridium purpureum in industrial wastewater to produce phycobiliproteins. Initially, light intensity and growth medium composition were optimized, indicating that light conditions influenced the phycobiliproteins production more than the medium composition. Conditions were then selected, according to biomass growth, nutrients removal and phycobiliproteins production, to cultivate these microalgae in food-industry wastewater. The three species could efficiently remove up to 98%, 94% and 100% of COD, inorganic nitrogen and PO43--P, respectively. Phycocyanin, allophycocyanin and phycoerythrin were successfully extracted from the biomass reaching concentrations up to 103, 57 and 30 mg/g dry weight, respectively. Results highlight the potential use of microalgae for industrial wastewater treatment and related high-value phycobiliproteins recovery.


Subject(s)
Microalgae , Porphyridium , Spirulina , Biomass , Wastewater
19.
Bioresour Technol ; 300: 122677, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31901777

ABSTRACT

Upflow anaerobic sludge blanket (UASB) reactors are widely used to treat domestic sewage and frequently require post-treatment. Little is known about the use of high rate algal ponds (HRAP) for post-treating UASB reactors' effluent. This study aimed to evaluate a UASB reactor followed by a HRAP in terms of sewage treatment efficiency and biogas production, during one year at demonstration-scale. The UASB reactor co-treated raw sewage and the harvested microalgal biomass from the HRAP, which was recirculated to the reactor. An identical UASB reactor, treating only raw sewage, was used as control. The results showed an overall removal of 65% COD and 61% N-NH4 in the system. Furthermore, methane yield was increased by 25% after anaerobic co-digestion with microalgae, from 156 to 211 NL CH4 kg-1 VS. An energy assessment was performed and showed a positive energy balance, with a net ratio of 2.11 to the annual average.


Subject(s)
Microalgae , Sewage , Anaerobiosis , Biofuels , Bioreactors , Methane , Waste Disposal, Fluid
20.
Bioresour Technol ; 298: 122563, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31841823

ABSTRACT

The aim of this study was to assess the co-digestion of residual biomass flows generated in microalgae-based wastewater treatment plants: microalgae, primary sludge and fat, oil and grease (FOG), with and without microalgae thermal pretreatment. The results evidenced the high methane yield of FOG (563 mL CH4/g VS) as compared to microalgae (140 mL CH4/gVS) and sludge (299 mL CH4/g VS). The methane yield of microalgae and sludge co-digestion (50-50% VS) was increased by 25 and 42% by adding 10 and 20% VS of FOG, respectively. Moreover, co-digestion trials improved the anaerobic digestion first-order kinetics by up to 67%. Regarding the thermal pretreatment, it increased the methane yield of microalgae by 60%, and 15% upon co-digestion with sludge and FOG. Therefore, co-digestion of microalgae, primary sludge and FOG appears as a promising strategy to enhance the biogas production, hence bioenergy recovery from wastewater, even without pretreatment.


Subject(s)
Microalgae , Wastewater , Anaerobiosis , Biofuels , Bioreactors , Methane , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL
...