Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 5(8)2022 08.
Article in English | MEDLINE | ID: mdl-35422437

ABSTRACT

Max is an obligate dimerization partner for the Myc transcription factors and for several repressors, such as Mnt, Mxd1-4, and Mga, collectively thought to antagonize Myc function in transcription and oncogenesis. Mga, in particular, is part of the variant Polycomb group repressive complex PRC1.6. Here, we show that ablation of the distinct PRC1.6 subunit Pcgf6-but not Mga-accelerates Myc-induced lymphomagenesis in Eµ-myc transgenic mice. Unexpectedly, however, Pcgf6 loss shows no significant impact on transcriptional profiles, in neither pre-tumoral B-cells, nor lymphomas. Altogether, these data unravel an unforeseen, Mga- and PRC1.6-independent tumor suppressor activity of Pcgf6.


Subject(s)
Carcinogenesis , Polycomb Repressive Complex 1 , Proto-Oncogene Proteins c-myc/metabolism , Animals , Carcinogenesis/genetics , Mice , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism
2.
Mol Oncol ; 16(5): 1132-1152, 2022 03.
Article in English | MEDLINE | ID: mdl-34632715

ABSTRACT

Multiple molecular features, such as activation of specific oncogenes (e.g., MYC, BCL2) or a variety of gene expression signatures, have been associated with disease course in diffuse large B-cell lymphoma (DLBCL), although their relationships and implications for targeted therapy remain to be fully unraveled. We report that MYC activity is closely correlated with-and most likely a driver of-gene signatures related to oxidative phosphorylation (OxPhos) in DLBCL, pointing to OxPhos enzymes, in particular mitochondrial electron transport chain (ETC) complexes, as possible therapeutic targets in high-grade MYC-associated lymphomas. In our experiments, indeed, MYC sensitized B cells to the ETC complex I inhibitor IACS-010759. Mechanistically, IACS-010759 triggered the integrated stress response (ISR) pathway, driven by the transcription factors ATF4 and CHOP, which engaged the intrinsic apoptosis pathway and lowered the apoptotic threshold in MYC-overexpressing cells. In line with these findings, the BCL2-inhibitory compound venetoclax synergized with IACS-010759 against double-hit lymphoma (DHL), a high-grade malignancy with concurrent activation of MYC and BCL2. In BCL2-negative lymphoma cells, instead, killing by IACS-010759 was potentiated by the Mcl-1 inhibitor S63845. Thus, combining an OxPhos inhibitor with select BH3-mimetic drugs provides a novel therapeutic principle against aggressive, MYC-associated DLBCL variants.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Proto-Oncogene Proteins c-myc , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Oncogenes , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Respiration
3.
EMBO J ; 40(10): e105464, 2021 05 17.
Article in English | MEDLINE | ID: mdl-33792944

ABSTRACT

Eukaryotic transcription factors recognize specific DNA sequence motifs, but are also endowed with generic, non-specific DNA-binding activity. How these binding modes are integrated to determine select transcriptional outputs remains unresolved. We addressed this question by site-directed mutagenesis of the Myc transcription factor. Impairment of non-specific DNA backbone contacts caused pervasive loss of genome interactions and gene regulation, associated with increased intra-nuclear mobility of the Myc protein in murine cells. In contrast, a mutant lacking base-specific contacts retained DNA-binding and mobility profiles comparable to those of the wild-type protein, but failed to recognize its consensus binding motif (E-box) and could not activate Myc-target genes. Incidentally, this mutant gained weak affinity for an alternative motif, driving aberrant activation of different genes. Altogether, our data show that non-specific DNA binding is required to engage onto genomic regulatory regions; sequence recognition in turn contributes to transcriptional activation, acting at distinct levels: stabilization and positioning of Myc onto DNA, and-unexpectedly-promotion of its transcriptional activity. Hence, seemingly pervasive genome interaction profiles, as detected by ChIP-seq, actually encompass diverse DNA-binding modalities, driving defined, sequence-dependent transcriptional responses.


Subject(s)
DNA/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Transcription Factors/metabolism , Base Sequence/genetics , Base Sequence/physiology , Binding Sites , DNA/genetics , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Protein Stability , Proto-Oncogene Proteins c-myc/genetics , Transcription Factors/genetics
4.
Hepatology ; 72(4): 1430-1443, 2020 10.
Article in English | MEDLINE | ID: mdl-31965581

ABSTRACT

BACKGROUND AND AIMS: Activation of MYC and catenin beta-1 (CTNNB1, encoding ß-catenin) can co-occur in liver cancer, but how these oncogenes cooperate in tumorigenesis remains unclear. APPROACH AND RESULTS: We generated a mouse model allowing conditional activation of MYC and WNT/ß-catenin signaling (through either ß-catenin activation or loss of APC - adenomatous polyposis coli) upon expression of CRE recombinase in the liver and monitored their effects on hepatocyte proliferation, apoptosis, gene expression profiles, and tumorigenesis. Activation of WNT/ß-catenin signaling strongly accelerated MYC-driven carcinogenesis in the liver. Both pathways also cooperated in promoting cellular transformation in vitro, demonstrating their cell-autonomous action. Short-term induction of MYC and ß-catenin in hepatocytes, followed by RNA-sequencing profiling, allowed the identification of a "Myc/ß-catenin signature," composed of a discrete set of Myc-activated genes whose expression increased in the presence of active ß-catenin. Notably, this signature enriched for targets of Yes-associated protein (Yap) and transcriptional coactivator with PDZ-binding motif (Taz), two transcriptional coactivators known to be activated by WNT/ß-catenin signaling and to cooperate with MYC in mitogenic activation and liver transformation. Consistent with these regulatory connections, Yap/Taz accumulated upon Myc/ß-catenin activation and were required not only for the ensuing proliferative response, but also for tumor cell growth and survival. Finally, the Myc/ß-catenin signature was enriched in a subset of human hepatocellular carcinomas characterized by comparatively poor prognosis. CONCLUSIONS: Myc and ß-catenin show a strong cooperative action in liver carcinogenesis, with Yap and Taz serving as mediators of this effect. These findings warrant efforts toward therapeutic targeting of Yap/Taz in aggressive liver tumors marked by elevated Myc/ß-catenin activity.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Cell Cycle Proteins/physiology , Liver Neoplasms, Experimental/etiology , Proto-Oncogene Proteins c-myc/physiology , Trans-Activators/physiology , beta Catenin/physiology , Animals , Mice , Mice, Inbred C57BL , Wnt Signaling Pathway/physiology , YAP-Signaling Proteins
5.
EMBO Rep ; 20(9): e47987, 2019 09.
Article in English | MEDLINE | ID: mdl-31334602

ABSTRACT

Upon activation, lymphocytes exit quiescence and undergo substantial increases in cell size, accompanied by activation of energy-producing and anabolic pathways, widespread chromatin decompaction, and elevated transcriptional activity. These changes depend upon prior induction of the Myc transcription factor, but how Myc controls them remains unclear. We addressed this issue by profiling the response to LPS stimulation in wild-type and c-myc-deleted primary mouse B-cells. Myc is rapidly induced, becomes detectable on virtually all active promoters and enhancers, but has no direct impact on global transcriptional activity. Instead, Myc contributes to the swift up- and down-regulation of several hundred genes, including many known regulators of the aforementioned cellular processes. Myc-activated promoters are enriched for E-box consensus motifs, bind Myc at the highest levels, and show enhanced RNA Polymerase II recruitment, the opposite being true at down-regulated loci. Remarkably, the Myc-dependent signature identified in activated B-cells is also enriched in Myc-driven B-cell lymphomas: hence, besides modulation of new cancer-specific programs, the oncogenic action of Myc may largely rely on sustained deregulation of its normal physiological targets.


Subject(s)
B-Lymphocytes/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Cell Cycle/genetics , Cell Cycle/physiology , Cell Proliferation/genetics , Cell Proliferation/physiology , Chromatin Immunoprecipitation , Female , Gene Expression Regulation, Neoplastic/genetics , High-Throughput Nucleotide Sequencing , Immunoblotting , Male , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-myc/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...