Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Lab Anim (NY) ; 53(3): 67-79, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38438748

ABSTRACT

Although biomedical research is experiencing a data explosion, the accumulation of vast quantities of data alone does not guarantee a primary objective for science: building upon existing knowledge. Data collected that lack appropriate metadata cannot be fully interrogated or integrated into new research projects, leading to wasted resources and missed opportunities for data repurposing. This issue is particularly acute for research using animals, where concerns regarding data reproducibility and ensuring animal welfare are paramount. Here, to address this problem, we propose a minimal metadata set (MNMS) designed to enable the repurposing of in vivo data. MNMS aligns with an existing validated guideline for reporting in vivo data (ARRIVE 2.0) and contributes to making in vivo data FAIR-compliant. Scenarios where MNMS should be implemented in diverse research environments are presented, highlighting opportunities and challenges for data repurposing at different scales. We conclude with a 'call for action' to key stakeholders in biomedical research to adopt and apply MNMS to accelerate both the advancement of knowledge and the betterment of animal welfare.


Subject(s)
Biomedical Research , Metadata , Animals , Reproducibility of Results , Animal Welfare
2.
J Neurochem ; 158(2): 539-553, 2021 07.
Article in English | MEDLINE | ID: mdl-33797782

ABSTRACT

Converging lines of evidence from several models, and post-mortem human brain tissue studies, support the involvement of the kynurenine pathway (KP) in Huntington's disease (HD) pathogenesis. Quantifying KP metabolites in HD biofluids is desirable, both to study pathobiology and as a potential source of biomarkers to quantify pathway dysfunction and evaluate the biochemical impact of therapeutic interventions targeting its components. In a prospective single-site controlled cohort study with standardised collection of cerebrospinal fluid (CSF), blood, phenotypic and imaging data, we used high-performance liquid-chromatography to measure the levels of KP metabolites-tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid and quinolinic acid-in CSF and plasma of 80 participants (20 healthy controls, 20 premanifest HD and 40 manifest HD). We investigated short-term stability, intergroup differences, associations with clinical and imaging measures and derived sample-size calculation for future studies. Overall, KP metabolites in CSF and plasma were stable over 6 weeks, displayed no significant group differences and were not associated with clinical or imaging measures. We conclude that the studied metabolites are readily and reliably quantifiable in both biofluids in controls and HD gene expansion carriers. However, we found little evidence to support a substantial derangement of the KP in HD, at least to the extent that it is reflected by the levels of the metabolites in patient-derived biofluids.


Subject(s)
Huntington Disease/blood , Huntington Disease/cerebrospinal fluid , Kynurenine/blood , Kynurenine/cerebrospinal fluid , Signal Transduction , Adult , Aged , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Chromatography, High Pressure Liquid , Cohort Studies , Female , Humans , Huntington Disease/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Phenotype , Prospective Studies
3.
Front Cell Neurosci ; 13: 287, 2019.
Article in English | MEDLINE | ID: mdl-31316354

ABSTRACT

Opioids play a major role at descending pain modulation but the effects of neuropathic pain on the brain opioidergic system remain understudied. Since descending facilitation is enhanced during neuropathic pain, we studied the opioidergic modulation of the dorsal reticular nucleus (DRt), a medullary pain facilitatory area, in the spared nerve injury (SNI) model of neuropathic pain. We first performed a series of behavioral experiments in naïve-animals to establish the role of µ-opioid receptor (MOR) in the effects of endogenous and exogenous opioids at the DRt. Specifically, we showed that lentiviral-mediated MOR-knockdown at the DRt increased sensitivity to thermal and mechanical stimuli while the MOR agonist DAMGO induced the opposite effects. Additionally, we showed that MOR-knockdown and the pharmacological blockade of MOR by CTAP at the DRt decreased and inhibited, respectively, the analgesic effects of systemic morphine. Then, we performed in vivo microdialysis to measure enkephalin peptides in the DRt and evaluated MOR expression in the DRt at mRNA, protein and phosphorylated form levels by quantitative real-time PCR and immunohistochemistry, respectively. SNI-animals, compared to sham control, showed higher levels of enkephalin peptides, lower MOR-labeled cells without alterations in MOR mRNA levels, and higher phosphorylated MOR-labeled cells. Finally, we performed behavioral studies in SNI animals to determine the potency of systemic morphine and the effects of the pharmacologic and genetic manipulation of MOR at the DRt. We showed a reduced potency of the antiallodynic effects of systemic morphine in SNI-animals compared to the antinociceptive effects in sham animals. Increasing MOR-cells at the DRt of SNI-animals by lentiviral-mediated MOR-overexpression produced no effects on mechanical allodynia. DAMGO induced anti-allodynia only after MOR-overexpression. These results show that MOR inhibits DRt pain facilitatory actions and that this action contributes to the analgesic effects of systemic opioids. We further show that the inhibitory function of MOR is impaired during neuropathic pain. This is likely due to desensitization and degradation of MOR which are adaptations of the receptor that can be triggered by MOR phosphorylation. Skipping counter-regulatory pathways involved in MOR adaptations might restore the opioidergic inhibition at pain facilitatory areas.

4.
CPT Pharmacometrics Syst Pharmacol ; 8(2): 107-117, 2019 02.
Article in English | MEDLINE | ID: mdl-30680960

ABSTRACT

A key challenge in the development of central nervous system drugs is the availability of drug target specific blood-based biomarkers. As a new approach, we applied cluster-based pharmacokinetic/pharmacodynamic (PK/PD) analysis in brain extracellular fluid (brainECF ) and plasma simultaneously after 0, 0.17, and 0.86 mg/kg of the dopamine D2/3 agonist quinpirole (QP) in rats. We measured 76 biogenic amines in plasma and brainECF after single and 8-day administration, to be analyzed by cluster-based PK/PD analysis. Multiple concentration-effect relations were observed with potencies ranging from 0.001-383 nM. Many biomarker responses seem to distribute over the blood-brain barrier (BBB). Effects were observed for dopamine and glutamate signaling in brainECF , and branched-chain amino acid metabolism and immune signaling in plasma. Altogether, we showed for the first time how cluster-based PK/PD could describe a systems-response across plasma and brain, thereby identifying potential blood-based biomarkers. This concept is envisioned to provide an important connection between drug discovery and early drug development.


Subject(s)
Biomarkers/blood , Dopamine Agonists/pharmacokinetics , Metabolomics/methods , Quinpirole/pharmacokinetics , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Dopamine Agonists/administration & dosage , Male , Pharmaceutical Preparations , Plasma/metabolism , Quinpirole/administration & dosage , Rats
5.
Gen Physiol Biophys ; 36(4): 431-441, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28857746

ABSTRACT

It was previously reported that adenosine-2A (A2A) receptors interact with dopamine-2 (D2) receptors on a molecular level. The aim of the current study was to investigate the functional output of this interaction. In vivo microdialysis was used to assess the effects of an antagonist of A2A receptors, ZM 241385, and an antagonist of D2 receptors haloperidol, either alone or in combination, on brain catecholamine levels. It was found that ZM 241385 did not alter catecholamine levels by its own, but potentiated haloperidol-induced dopamine and norepinephrine release in the nucleus accumbens and prefrontal cortex, respectively. In vivo electrophysiology was used to assess the effect of an agonist (CGS 216820) and an antagonist (ZM 241385) of A2A receptors on the excitability of dopamine and norepinephrine neurons. It was found that CGS 216820 dose-dependently inhibited dopamine and norepinephrine neurons and ZM 241385 reversed this inhibition. In conclusion, those A2A receptors modulate brain catecholamine transmission, and this modulation is mediated, at least in part, via the regulation of excitability of norepinephrine and dopamine neurons. The ability of antagonists of A2A receptors to potentiate the effect of haloperidol on brain norepinephrine and dopamine levels may enhance its clinical efficacy as an antipsychotic drug.


Subject(s)
Brain/metabolism , Catecholamines/metabolism , Neurotransmitter Agents/metabolism , Receptor, Adenosine A2A/metabolism , Receptors, Dopamine D2/metabolism , Synaptic Transmission/physiology , Action Potentials/physiology , Animals , Microdialysis/methods , Rats , Rats, Sprague-Dawley , Tissue Distribution
6.
Drug Metab Dispos ; 44(5): 624-33, 2016 May.
Article in English | MEDLINE | ID: mdl-26916207

ABSTRACT

Administration of bupropion [(±)-2-(tert-butylamino)-1-(3-chlorophenyl)propan-1-one] and its preformed active metabolite, hydroxybupropion [(±)-1-(3-chlorophenyl)-2-[(1-hydroxy-2-methyl-2-propanyl)amino]-1-propanone], to rats with measurement of unbound concentrations by quantitative microdialysis sampling of plasma and brain extracellular fluid was used to develop a compartmental pharmacokinetics model to describe the blood-brain barrier transport of both substances. The population model revealed rapid equilibration of both entities across the blood-brain barrier, with resultant steady-state brain extracellular fluid/plasma unbound concentration ratio estimates of 1.9 and 1.7 for bupropion and hydroxybupropion, respectively, which is thus indicative of a net uptake asymmetry. An overshoot of the brain extracellular fluid/plasma unbound concentration ratio at early time points was observed with bupropion; this was modeled as a time-dependent uptake clearance of the drug across the blood-brain barrier. Translation of the model was used to predict bupropion and hydroxybupropion exposure in human brain extracellular fluid after twice-daily administration of 150 mg bupropion. Predicted concentrations indicate that preferential inhibition of the dopamine and norepinephrine transporters by the metabolite, with little to no contribution by bupropion, would be expected at this therapeutic dose. Therefore, these results extend nuclear imaging studies on dopamine transporter occupancy and suggest that inhibition of both transporters contributes significantly to bupropion's therapeutic efficacy.


Subject(s)
Brain/metabolism , Bupropion/analogs & derivatives , Bupropion/pharmacokinetics , Extracellular Fluid/metabolism , Plasma/metabolism , Animals , Blood-Brain Barrier/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Humans , Male , Microdialysis/methods , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Rats , Rats, Sprague-Dawley
7.
Neuropharmacology ; 99: 1-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26100446

ABSTRACT

The interactions between the glutamatergic and the histaminergic systems in the brain are not fully understood. Here we studied histamine release in the medial prefrontal cortex and the posterior hypothalamus-tuberomamillary nucleus (PH-TMN) using in vivo microdialysis and electrophysiological recordings of histaminergc neurons in the PH-TMN in vivo to further address the mechanistic details of these interactions. We demonstrated that histaminergic activity was regulated by group II metabotropic glutamate receptors (mGluR 2 and 3) using systemic dosing with mGluR 2/3 agonist and antagonists and an mGluR 2 positive allosteric modulator. These interactions likely occur via direct modulation of glutamate release in the PH-TMN. The importance of circadian rhythm for histamine release was also shown using microdialysis studies with mGluR 2/3 compounds under light and dark conditions. Based on histamine release studies with NMDA and ketamine, we propose the existence of two sub-populations of NMDA receptors where one subtype is located on histaminergic cell bodies in the PH-TMN and the second on GABA-ergic neurons projecting to the PH-TMN. These subpopulations could be distinguished based on function, notably opposing actions were seen on histamine release in the medial prefrontal cortex of the rat. In summary, this paper provides evidence that the histaminergic system is closely regulated by glutamate neurons in multiple ways. In addition, this interaction depends to a great extent on the activity state of the subject.


Subject(s)
Brain/physiology , Glutamic Acid/metabolism , Histamine/metabolism , Neurons/physiology , Receptors, Metabotropic Glutamate/metabolism , Animals , Brain/drug effects , Circadian Rhythm/physiology , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Male , Microdialysis , Microelectrodes , Neurons/drug effects , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , gamma-Aminobutyric Acid/metabolism
8.
Pharmacol Rep ; 67(3): 624-30, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25933979

ABSTRACT

BACKGROUND: To verify relation between brain free levels, receptor occupancy in vivo and in vitro affinity at the target for mGluR5 negative allosteric modulator (NAM) MTEP. METHODS: We evaluated plasma and brain extra-cellular fluid (ECF) concentration of MTEP at behaviourally active dose (5mg/kg) using in vivo microdialysis. These values were compared it to the affinity in vitro (receptor binding and FLIPR) and to receptor occupancy in vivo. Another, related substance, MPEP was used for comparison. RESULTS: MTEP and MPEP respectively inhibited mGluR5 receptors function in vitro with an affinity of 25.4 and 12.3 nM respectively. Accordingly peak ECF (extracellular fluid) levels were 1.3 and 0.14 µM, and peak total plasma levels were 7-11 and 2.6 µM. The ED50 for in vivo receptor occupancy was for both agents in the range of 0.8-0.7 mg/kg. CONCLUSIONS: At behaviourally active dose MTEP produced complete mGluR5 receptor occupancy but over 50 times higher ECF concentrations than affinity for mGluR5 receptor in vitro. This difference is seems lower for other mGluR5 NAM compounds such as MPEP. A possibly explanation could be different distribution in body compartments of both agents leading to errors of estimation with the microdialysis technique or different pharmacological activity at the receptor.


Subject(s)
Brain/metabolism , Pyridines/metabolism , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Receptor, Metabotropic Glutamate 5/metabolism , Thiazoles/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Brain/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Male , Protein Binding/physiology , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Thiazoles/pharmacology
9.
J Mol Neurosci ; 56(2): 320-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25820671

ABSTRACT

Brain monoamines (serotonin, norepinephrine, dopamine, and histamine) play an important role in emotions, cognition, and pathophysiology and treatment of mental disorders. The interactions between serotonin, norepinephrine, and dopamine were studied in numerous works; however, histamine system received less attention. The aim of this study was to investigate the interactions between histamine and other monoamines, using in vivo microdialysis and electrophysiology. It was found that the inverse agonist of histamine-3 receptors, thioperamide, increased the firing activity of dopamine neurons in the ventral tegmental area. Selective agonist of histamine-3 receptors, immepip, reversed thiperamide-induced stimulation of firing activity of dopamine neurons. The firing rates of serotonin and norpeinephrine neurons were not attenuated by immepip or thioperamide. Thioperamide robustly and significantly increased extracellular concentrations of serotonin, norepinephrine, and dopamine in the rat prefrontal cortex and slightly increased norepinephrine and dopamine levels in the tuberomammillary nucleus of the hypothalamus. It can be concluded that histamine stimulates serotonin, norepinephrine, and dopamine transmission in the brain. Modulation of firing of dopamine neurons is a key element in functional interactions between histamine and other monoamines. Antagonists of histamine-3 receptors, because of their potential ability to stimulate monoamine neurotransmission, might be beneficial in the treatment of mental disorders.


Subject(s)
Action Potentials , Brain/metabolism , Dopamine/metabolism , Histamine/metabolism , Norepinephrine/metabolism , Serotonin/metabolism , Animals , Brain/physiology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Histamine Agonists/pharmacology , Rats , Rats, Wistar , Receptors, Histamine H3/metabolism
10.
J Neural Transm (Vienna) ; 122(9): 1221-38, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25796190

ABSTRACT

Sarizotan 1-[(2R)-3,4-dihydro-2H-chromen-2-yl]-N-[[5-(4-fluorophenyl) pyridin-3-yl]methyl] methenamine, showed an in vivo pharmaco-EEG profile resembling that of methylphenidate which is used in attention deficit/hyperactivity disorder (ADHD). In turn, we tested sarizotan against impulsivity in juvenile rats measuring the choice for large delayed vs. a small immediate reward in a T-maze and obtained encouraging results starting at 0.03 mg/kg (plasma levels of ~11 nM). Results from rats treated neonatally with 6-hydroxydopamine (6-OHDA), also supported anti-ADHD activity although starting at 0.3 mg/kg. However, microdialysis studies revealed that free brain concentration of sarizotan at active doses were below its affinity for 5-HT1A receptors, the assumed primary target. In contrast, electrophysiological experiments in mid-brain Raphé serotonergic cells paralleled by plasma sampling showed that there was ~60% inhibition of firing rate­indicating significant activation of 5-HT1A receptors­at a plasma concentration of 76 nM. In line with this, we observed that sarizotan concentrations in brain homogenates were similar to total blood levels but over 500 fold higher than free extracellular fluid (ECF) concentrations as measured using brain microdialysis. These data suggest that sarizotan may have potential anti-ADHD effects at low doses free of the previously reported side-effects. Moreover, in this case a classical pharmacokinetic-pharmacodynamic relationship based on free brain concentrations seems to be less appropriate than target engagement pharmacodynamic readouts.


Subject(s)
Attention Deficit Disorder with Hyperactivity/drug therapy , Psychotropic Drugs/pharmacology , Psychotropic Drugs/pharmacokinetics , Action Potentials/drug effects , Animals , Attention Deficit Disorder with Hyperactivity/physiopathology , Brain/drug effects , Brain/physiopathology , Cross-Over Studies , Disease Models, Animal , Impulsive Behavior/drug effects , Male , Maze Learning/drug effects , Neurons/drug effects , Neurons/physiology , Organic Chemicals/pharmacokinetics , Organic Chemicals/pharmacology , Oxidopamine , Rats, Inbred F344 , Rats, Sprague-Dawley , Rats, Wistar , Receptor, Serotonin, 5-HT1A/metabolism
11.
Neurochem Int ; 81: 10-5, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25542858

ABSTRACT

Many patients with major depression do not respond to selective serotonin reuptake inhibitors (SSRIs). Lack of response could be due to inhibition of dopamine (DA) release by serotonin (5-HT) through 5-HT2C receptors. Combining an SSRI with a 5-HT2C antagonist may result in improved efficacy by causing simultaneous increases of 5-HT and DA. In order to test this augmentation strategy, male Wistar rats were treated (s.c.) with an acute dose of the SSRI citalopram (Cit, 5 mg/kg), the 5-HT2C antagonist SB 242084 (SB, 2 mg/kg), or Cit + SB, and the effect on 5-HT and DA release in the nucleus accumbens (NAcc) was assessed by microdialysis. In a separate experiment, animals were treated with vehicle, Cit (20 mg/kg/d), SB (2 mg/kg/d) or Cit + SB for a period of 2 days (s.c.), and the impact on the release of 5-HT and DA in the ventral tegmental area (VTA) and NAcc was studied. On the day of microdialysis, 5-HT2C receptor sensitivity was assessed with an SB challenge. Acutely administered Cit + SB increased 5-HT release in the NAcc more than Cit alone. SB alone increased DA release in the NAcc (not in the VTA), but when administered together with Cit, this effect was abolished. A 2-day treatment with Cit or Cit + SB increased 5-HT release in both VTA and NAcc. Combining Cit with SB augmented the effect of Cit in the VTA. DA release in VTA and NAcc was only significantly increased after 2-days of treatment with Cit + SB. In conclusion, Cit + SB had synergistic effects on 5-HT and DA release after 2-days of treatment, probably related to a decreased tonic inhibition of DA release via 5-HT2C receptors. Regional differences occur and future studies should elucidate if this augmentation strategy is beneficial at the behavioral level.


Subject(s)
Citalopram/pharmacology , Dopamine/metabolism , Nucleus Accumbens/drug effects , Receptor, Serotonin, 5-HT2C/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin Antagonists/pharmacology , Serotonin/metabolism , Ventral Tegmental Area/drug effects , Animals , Male , Microdialysis , Nucleus Accumbens/metabolism , Rats , Rats, Wistar , Ventral Tegmental Area/metabolism
12.
Neuropharmacology ; 72: 88-95, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23639435

ABSTRACT

Inhibition of central α4ß2 nAChRs by antidepressants, proposed to contribute to their clinical efficacy, was assessed for monoamine reuptake inhibitors (amitriptyline, nortriptyline, fluoxetine, sertraline, paroxetine, citalopram) by comparing projected human unbound brain drug concentrations (Cu,b) at therapeutic doses with concentrations that inhibit human α4ß2 nAChRs in vitro. Inhibitory concentrations (IC50) were determined by patch clamp and ranged from 0.8-3.2 µM, except for nortriptyline (IC50 = 100 nM). Cu,b values were calculated from human unbound plasma drug concentrations (Cu,p) and rat-derived brain-to-plasma and extracellular fluid-to-plasma ratios for the unbound drug, which are near unity, due to much higher brain tissue binding than plasma protein binding of these drugs. Accordingly in humans, antidepressant Cu,b are projected to essentially equal Cu,p, with average values from 3-87 nM, which are 30-to-250-fold below their IC50 concentrations. Based on our model, monoaminergic antidepressants minimally inhibit central nAChRs and it is unlikely that α4ß2 nAChR antagonism contributes to their antidepressant activity. Nortriptyline is an exception with a Cu,b that is 2-fold below its IC50, which is comparable to the nAChR antagonist (±)-mecamylamine, for which Cu,b is 4-fold below its IC50; both drugs will inhibit a substantial fraction of α4ß2 nAChRs. The Cu,b of the α4ß2 nAChR partial agonist varenicline, which has antidepressant-like activity in a murine model, is higher than its IC50 and varenicline is projected to cause ~70% inhibition of α4ß2 nAChRs. Taken together these data may help explain the negative outcome of recent antidepressant augmentation trials with mecamylamine and the partial agonist CP-601927.


Subject(s)
Antidepressive Agents/pharmacology , Nortriptyline/pharmacology , Receptors, Nicotinic/metabolism , Animals , Area Under Curve , Brain/drug effects , Brain/metabolism , Chromatography, Liquid , Humans , Inhibitory Concentration 50 , Male , Microdialysis , Neurons/drug effects , Neurons/physiology , Nicotinic Agonists/pharmacology , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Rats, Wistar , Tandem Mass Spectrometry , Time Factors
13.
Drug Metab Dispos ; 40(10): 1909-16, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22736307

ABSTRACT

A significant barrier to realization of the full potential of clozapine as a therapeutic agent in the treatment of schizophrenia is the substantial interpatient variability that exists along the therapeutic continuum of no response-efficacious response-adverse response. Genetic polymorphisms that manifest as highly variable pharmacodynamic and pharmacokinetic measures are its expected causes. To support investigations that seek to understand these causes, the plasma and central nervous system pharmacokinetics of clozapine were determined in rats, the latter using microdialysis sampling. Results obtained with clozapine and N-desmethylclozapine, a pharmacologically active human metabolite that was administered to a separate group of animals, support a conclusion of net carrier-mediated efflux of both compounds across the blood-brain barrier. These results are supported by the replication of published findings regarding the passive transport and net efflux transport of two model compounds, escitalopram and risperidone, respectively. The results obtained with clozapine and N-desmethylclozapine are considered a first step in the development of preclinical pharmacokinetic-pharmacodynamic models that will support deeper mechanistic studies of clozapine in in vivo pharmacology, as well as the development of translational models that augment pharmacogenetic investigations that seek to improve the safety and efficacy of clozapine therapeutic intervention in the treatment of schizophrenia.


Subject(s)
Antipsychotic Agents/pharmacokinetics , Brain/metabolism , Clozapine/analogs & derivatives , Microdialysis , Animals , Antipsychotic Agents/administration & dosage , Biotransformation , Blood-Brain Barrier/metabolism , Clozapine/administration & dosage , Clozapine/pharmacokinetics , Injections, Subcutaneous , Male , Models, Biological , Permeability , Rats , Rats, Wistar
14.
J Pharmacol Exp Ther ; 340(3): 765-80, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22178753

ABSTRACT

The present studies characterized the functional profile of N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-1,2-dihydro-3-H-benzo[e]indole-3-carboxamide) (S32212), a combined serotonin (5-HT)(2C) receptor inverse agonist and α(2)-adrenoceptor antagonist that also possesses 5-HT(2A) antagonist properties (J Pharmacol Exp Ther 340:750-764, 2012). Upon parenteral and/or oral administration, dose-dependent (0.63-40.0 mg/kg) actions were observed in diverse procedures. Both acute and subchronic administration of S32212 reduced immobility time in a forced-swim test in rats. Acutely, it also suppressed marble burying and aggressive behavior in mice. Long-term administration of S32212 was associated with rapid (1 week) and sustained (5 weeks) normalization of sucrose intake in rats exposed to chronic mild stress and with elevated levels of mRNA encoding brain-derived neurotrophic factor in hippocampus and amygdala (2 weeks). S32212 accelerated the firing rate of adrenergic perikarya in the locus coeruleus and elevated dialysis levels of noradrenaline in the frontal cortex and hippocampus of freely moving rats. S32212 also elevated the frontocortical levels of dopamine and acetylcholine, whereas 5-HT, amino acids, and histamine were unaffected. These neurochemical actions were paralleled by "promnemonic" properties: blockade of scopolamine-induced deficits in radial maze performance and social recognition and reversal of delay-induced impairments in social recognition, social novelty discrimination, and novel object recognition. It also showed anxiolytic actions in a Vogel conflict procedure. Furthermore, in an electroencephalographic study of sleep architecture, S32212 enhanced slow-wave and rapid eye movement sleep, while decreasing waking. Finally, chronic administration of S32212 neither elevated body weight nor perturbed sexual behavior in male rats. In conclusion, S32212 displays a functional profile consistent with improved mood and cognitive performance, together with satisfactory tolerance.


Subject(s)
Adrenergic alpha-2 Receptor Antagonists/pharmacology , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Brain Chemistry/drug effects , Indoles/pharmacology , Piperazines/pharmacology , Receptor, Serotonin, 5-HT2C/drug effects , Acetylcholine/analysis , Aggression/drug effects , Amygdala/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Dopamine/analysis , Dose-Response Relationship, Drug , Drug Inverse Agonism , Hippocampus/metabolism , Male , Mice , Motor Activity/drug effects , Norepinephrine/analysis , Rats , Rats, Wistar , Scopolamine/pharmacology , Sexual Behavior, Animal/drug effects , Sleep/drug effects , Sleep/physiology , Swimming
15.
Neurosci Lett ; 507(2): 151-5, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22197547

ABSTRACT

Spinal noradrenaline is thought to play an important role in descending pain inhibitory pathways and the modulation of nociceptive information at the spinal level. Tapentadol is a µ-opioid receptor (MOR) agonist and noradrenaline reuptake inhibitor (NRI). We showed previously that tapentadol, in contrast to morphine, elevates levels of noradrenaline, but not serotonin, in the ventral hippocampus of rats. The aim of this study was to examine the effects of tapentadol, morphine and venlafaxine on spinal monoamine levels. Rats were implanted with spinal microdialysis probes. Drugs were administered intraperitoneally, and samples were collected for 3h in isoflurane-anesthetized animals and analysed for monoamine content using HPLC-MS/MS. In terms of area-under-curve (AUC, 0-180 min), tapentadol (4.64-21.5mg/kg) produced a dose-dependent, significant increase in extracellular spinal noradrenaline levels (9275±4346 min% at the highest dose versus -1047±889 min% for vehicle). A maximum increase of 182±32% of baseline was reached 60 min after administration of 10mg/kg tapentadol. Venlafaxine (10mg/kg) produced an effect of similar magnitude. In contrast, tapentadol decreased extracellular spinal serotonin levels (non-significantly compared to vehicle), while venlafaxine increased spinal serotonin to 267±74% of baseline. In contrast to tapentadol and venlafaxine, morphine slightly decreased levels of noradrenaline and serotonin. This study demonstrates that analgesic doses of tapentadol (and venlafaxine), but not morphine, increase spinal noradrenaline levels and that tapentadol is devoid of a relevant serotonergic effect. It supports the suggestion that the NRI component of tapentadol is functionally relevant and contributes to its mechanism of action.


Subject(s)
Analgesics, Opioid/pharmacology , Norepinephrine/metabolism , Phenols/pharmacology , Spinal Cord/drug effects , Animals , Area Under Curve , Chromatography, High Pressure Liquid , Cyclohexanols/pharmacology , Male , Microdialysis , Morphine/pharmacology , ROC Curve , Rats , Rats, Wistar , Receptors, Opioid, mu/agonists , Spinal Cord/metabolism , Tandem Mass Spectrometry , Tapentadol , Venlafaxine Hydrochloride
16.
Eur J Neurosci ; 34(11): 1747-55, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22050612

ABSTRACT

The current study aimed to investigate the effect of histamine-3 (H(3)) receptors, expressed in the tuberomammillary nucleus (TMN) of the hypothalamus and in the prefrontal cortex (PFC), on histamine neurotransmission in the rat brain. The firing activity of histamine neurons in the TMN was measured using in vivo extracellular single-unit electrophysiology, under propofol anesthesia. Extracellular histamine levels were determined using the dual (PFC and TMN) probe microdialysis, in freely-moving animals. Histamine levels in dialysates were determined using high-performance liquid chromatography (HPLC) and fluorescence detection. It was found that systemic administration of the selective H(3)-agonist, immepip, decreases, and the reverse H(3) /H(4)-agonist, thioperamide, increases the firing activity of histamine neurons in the TMN and the release of histamine in TMN and PFC. Local perfusion of immepip into the TMN increased, and thioperamide decreased, histamine levels in the TMN but not in the PFC. Local perfusion of immepip into the PFC, however, decreased extracellular histamine levels in both TMN and PFC. It can be concluded that brain H(3) receptors, and especially those expressed in the PFC, play an important role in the autoregulation of histamine neurotransmission. It is possible that H(3) receptors in the PFC are expressed on pyramidal neurons projecting to the TMN, and activation of these receptors diminishes glutamate excitatory input from PFC to the TMN. As the brain histamine system has a role in pathophysiology of psychotic, affective, cognitive, sleep and eating disorders, H(3) receptors are potential targets for future CNS medications.


Subject(s)
Cerebral Cortex/metabolism , Electrophysiology/methods , Histamine/metabolism , Hypothalamus/metabolism , Microdialysis/methods , Receptors, Histamine H3/metabolism , Synaptic Transmission/physiology , Animals , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Histamine H3 Antagonists/pharmacology , Hypothalamus/cytology , Hypothalamus/drug effects , Imidazoles/pharmacology , Male , Piperidines/pharmacology , Rats , Rats, Wistar
17.
Cell ; 145(6): 863-74, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21640374

ABSTRACT

Metabolites in the kynurenine pathway, generated by tryptophan degradation, are thought to play an important role in neurodegenerative disorders, including Alzheimer's and Huntington's diseases. In these disorders, glutamate receptor-mediated excitotoxicity and free radical formation have been correlated with decreased levels of the neuroprotective metabolite kynurenic acid. Here, we describe the synthesis and characterization of JM6, a small-molecule prodrug inhibitor of kynurenine 3-monooxygenase (KMO). Chronic oral administration of JM6 inhibits KMO in the blood, increasing kynurenic acid levels and reducing extracellular glutamate in the brain. In a transgenic mouse model of Alzheimer's disease, JM6 prevents spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extends life span, prevents synaptic loss, and decreases microglial activation in a mouse model of Huntington's disease. These findings support a critical link between tryptophan metabolism in the blood and neurodegeneration, and they provide a foundation for treatment of neurodegenerative diseases.


Subject(s)
Alzheimer Disease/drug therapy , Huntington Disease/drug therapy , Kynurenic Acid/analysis , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Sulfonamides/therapeutic use , Thiazoles/therapeutic use , Administration, Oral , Alzheimer Disease/physiopathology , Animals , Brain Chemistry , Disease Models, Animal , Female , Humans , Kynurenic Acid/blood , Male , Mice , Mice, Transgenic , Sulfonamides/administration & dosage , Thiazoles/administration & dosage
18.
Neurochem Int ; 58(1): 78-84, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21056607

ABSTRACT

Since a substantial proportion of smokers have comorbid mood disorders, the smoking cessation aid varenicline might occasionally be prescribed to patients who are simultaneously treated with antidepressants. Given that varenicline is a selective nicotinic acetylcholine receptor partial agonist and not a substrate or inhibitor of drug metabolizing enzymes, pharmacokinetic interactions with various classes of antidepressants are highly unlikely. It is, however, conceivable that varenicline may have a pharmacodynamic effect on antidepressant-evoked increases in central monoamine release. Interactions resulting in excessive transmitter release could cause adverse events such as serotonin syndrome, while attenuation of monoamine release could impact the clinical efficacy of antidepressants. To investigate this we examined whether varenicline administration modulates the effects of the selective serotonin reuptake inhibitor sertraline and the monoamine oxidase inhibitor clorgyline, given alone and combined, on extracellular concentrations of the monoamines serotonin, dopamine, and norepinephrine in rat brain by microdialysis. Given the important role attributed to cortical monoamine release in serotonin syndrome as well as antidepressant activity, the effects on extracellular monoamine concentrations were measured in the medial prefrontal cortex. Responses to maximally effective doses of sertraline or clorgyline and of sertraline plus clorgyline were the same in the absence as in the presence of a relatively high dose of varenicline, which by itself had no significant effect on cortical monoamine release. This is consistent with the binding profile of varenicline that has insufficient affinity for receptors, enzymes, or transporters to inhibit or potentiate the pharmacologic effects of antidepressants. Since varenicline neither diminished nor potentiated sertraline- or clorgyline-induced increases in neurotransmitter levels, combining varenicline with serotonergic antidepressants is unlikely to cause excessive serotonin release or to attenuate antidepressant efficacy via effects on cortical serotonin, dopamine or norepinephrine release.


Subject(s)
Antidepressive Agents/pharmacology , Benzazepines/pharmacology , Biogenic Monoamines/metabolism , Extracellular Space/metabolism , Nicotinic Agonists/pharmacology , Prefrontal Cortex/metabolism , Quinoxalines/pharmacology , Animals , Chromatography, High Pressure Liquid , Clorgyline/pharmacology , Data Interpretation, Statistical , Dopamine/metabolism , Drug Interactions , Extracellular Space/drug effects , Male , Microdialysis , Monoamine Oxidase Inhibitors/pharmacology , Neurotransmitter Agents/metabolism , Norepinephrine/metabolism , Prefrontal Cortex/drug effects , Rats , Rats, Wistar , Serotonin/metabolism , Sertraline/pharmacology , Varenicline , Vesicular Monoamine Transport Proteins/metabolism
19.
Eur Neuropsychopharmacol ; 20(9): 599-621, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20483567

ABSTRACT

Though neurokinin(1) (NK(1)) receptors are implicated in depressed states and their treatment, selective antagonists have disappointed in clinical trials. Accordingly, we designed a novel ligand, S41744 (2-piperazin-1-yl-indan-2-carboxylic-acid-(3-chloro-5-fluoro-benzyl)-methyl-amide), which both blocks NK(1) receptors and interferes with serotonin (5-HT) reuptake. S41744 mimicked the selective antagonist aprepitant in binding human (h)NK(1) receptors and in antagonising Substance-P-mediated Extracellular-Regulated-Kinase phosphorylation (pK(B), 7.7). Further, it dose-dependently (0.63-40.0 mg/kg, i.p.) displaced ex vivo [(3)H]-[Sar(9),Met(O(2))(11)]-Substance P binding to gerbil striatum, attenuated formalin-induced hind-paw licking in gerbils, and antagonised locomotion induced by i.c.v. administration of the NK(1) agonist GR73632 to guinea pigs. Like paroxetine, S41744 recognised h5-HT transporters, reduced synaptosomal uptake of 5-HT (pK(B), 7.9), and dose-dependently (0.63-10.0 mg/kg) elevated dialysis levels of 5-HT in the hippocampus and frontal cortex of freely-moving guinea pigs. Further, S41744 increased extracellular levels of 5-HT in frontal cortex and hippocampus of rats to a greater extent than paroxetine, and its inhibitory influence upon serotonergic perikarya was blunted relative to its affinity for 5-HT transporters. S41744 more potently blocked stress-induced vocalizations in guinea pigs than aprepitant and paroxetine, and it was active in forced-swim and marble-burying procedures of putative antidepressant properties in mice. While aprepitant displayed anxiolytic actions in stress-induced foot-tapping and social interaction tests in gerbils, paroxetine was anxiogenic and S41744 "neutral", reflecting balanced NK(1) antagonism and suppression of 5-HT reuptake. Moreover, S41744 shared anxiolytic actions of aprepitant in the rat Vogel Conflict Test. In conclusion, S41744 is an innovative NK(1) antagonist/5-HT reuptake inhibitor justifying further evaluation for treatment of stress-related disorders.


Subject(s)
Indans/pharmacology , Indans/therapeutic use , Morpholines/pharmacology , Morpholines/therapeutic use , Neurokinin-1 Receptor Antagonists , Paroxetine/pharmacology , Paroxetine/therapeutic use , Piperazines/pharmacology , Piperazines/therapeutic use , Serotonin Plasma Membrane Transport Proteins/drug effects , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/toxicity , Aprepitant , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Gerbillinae , Guinea Pigs , Humans , Indans/toxicity , Male , Mice , Morpholines/toxicity , Motor Activity/drug effects , Pain Measurement , Paroxetine/toxicity , Piperazines/toxicity , Pregnancy , Radioligand Assay , Rats , Rats, Wistar , Receptors, Neurokinin-1/metabolism , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/therapeutic use , Selective Serotonin Reuptake Inhibitors/toxicity , Stress, Physiological/drug effects
20.
J Sex Med ; 7(5): 1757-67, 2010 May.
Article in English | MEDLINE | ID: mdl-20163532

ABSTRACT

INTRODUCTION: Hypoactive sexual desire disorder (HSDD) is defined as persistent lack of sexual fantasies or desire marked by distress. With a prevalence of 10% it is the most common form of female sexual dysfunction. Recently, the serotonin-1A (5-HT(1A)) receptor agonist and the serotonin-2A (5-HT(2A)) receptor antagonist flibanserin were shown to be safe and efficacious in premenopausal women suffering from HSDD in phase III clinical trials. AIM: The current study aims to assess the effect of flibanserin on neurotransmitters serotonin (5-HT), norepinephrine (NE), dopamine (DA), glutamate, and gamma-aminobutyric acid (GABA) in brain areas associated with sexual behavior. METHODS: Flibanserin was administered to female Wistar rats (280-350 g). Microdialysis probes were stereotactically inserted into the mPFC, NAC, or MPOA, under isoflurane anesthesia. The extracellular levels of neurotransmitters were assessed in freely moving animals, 24 hours after the surgery. MAIN OUTCOME MEASURES: Dialysate levels of DA, NE, and serotonin from medial prefrontal cortex (mPFC), nucleus accumbens (NAC), and hypothalamic medial preoptic area (MPOA) from female rats. RESULTS: Acute flibanserin administration decreased 5-HT and increased NE levels in all tested areas. DA was increased in mPFC and MPOA, but not in the NAC. Basal levels of NE in mPFC and NAC and of DA in mPFC were increased upon repeated flibanserin administration, when compared to vehicle-treated animals. The basal levels of 5-HT were not altered by repeated flibanserin administration, but basal DA and NE levels were increased in the mPFC. Glutamate and GABA levels remained unchanged following either repeated or acute flibanserin treatment. CONCLUSIONS: Systemic administration of flibanserin to female rats differentially affects the monoamine systems of the brain. This may be the mechanistic underpinning of flibanserin's therapeutic efficacy in HSDD, as sexual behavior is controlled by an intricate interplay between stimulatory (catecholaminergic) and inhibitory (serotonergic) systems.


Subject(s)
Benzimidazoles/pharmacology , Brain/drug effects , Neurotransmitter Agents/metabolism , Serotonin 5-HT1 Receptor Agonists , Serotonin 5-HT2 Receptor Agonists , Animals , Dopamine/metabolism , Dose-Response Relationship, Drug , Female , Microdialysis , Norepinephrine/metabolism , Nucleus Accumbens/drug effects , Prefrontal Cortex/drug effects , Preoptic Area/drug effects , Rats , Rats, Wistar , Serotonin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...