Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cell Dev Biol ; 11: 1225128, 2023.
Article in English | MEDLINE | ID: mdl-37791075

ABSTRACT

The peptidyl prolyl cis-trans isomerase Pin1 plays vital roles in diverse cellular processes and pathological conditions. NeuroD is a differentiation and survival factor for a subset of neurons and pancreatic endocrine cells. Although multiple phosphorylation events are known to be crucial for NeuroD function, their mechanisms remain elusive. In this study, we demonstrate that zebrafish embryos deficient in Pin1 displayed phenotypes resembling those associated with NeuroD depletion, characterized by defects in formation of mechanosensory hair cells. Furthermore, zebrafish Pin1 interacts with NeuroD in a phosphorylation-dependent manner. In Pin1-deficient cell lines, NeuroD is rapidly degraded. However, the protein stability of NeuroD is restored upon overexpression of Pin1. These findings suggest that Pin1 functionally regulates NeuroD protein levels by post-phosphorylation cis-trans isomerization during neuronal specification.

2.
Biol Open ; 1(8): 747-53, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-23213468

ABSTRACT

The yolk syncytial layer (YSL) performs multiple critical roles during zebrafish development. However, little is known about the cellular and molecular mechanisms that underlie the formation of this important extraembryonic structure. Here, we demonstrate by timelapse confocal microscopy of a transgenic line expressing membrane-targeted GFP that the YSL forms as a result of the absence of cytokinesis between daughter nuclei at the tenth mitotic division and the regression of pre-existing marginal cell membranes, thus converting the former margin of the blastoderm into a syncytium. We show that disruption of components of the cytoskeleton induces the formation of an expanded YSL, and identify Rock1 as the regulator of cytoskeletal dynamics that lead to YSL formation. Our results suggest that the YSL forms as a result of controlled cytokinesis failure in the marginal blastomeres, and Rock1 function is necessary for this process to occur. Uncovering the cellular and molecular mechanisms underlying zebrafish YSL formation offers significant insight into syncytial development in other tissues as well as in pathological conditions.

3.
PLoS One ; 3(9): e3090, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18769618

ABSTRACT

BACKGROUND: The choroid plexus (ChP), a component of the blood-brain barrier (BBB), produces the cerebrospinal fluid (CSF) and as a result plays a role in (i) protecting and nurturing the brain as well as (ii) in coordinating neuronal migration during neurodevelopment. Until now ChP development was not analyzed in living vertebrates due to technical problems. METHODOLOGY/PRINCIPAL FINDINGS: We have analyzed the formation of the fourth ventricle ChP of zebrafish in the GFP-tagged enhancer trap transgenic line SqET33-E20 (Gateways) by a combination of in vivo imaging, histology and mutant analysis. This process includes the formation of the tela choroidea (TC), the recruitment of cells from rhombic lips and, finally, the coalescence of TC resulting in formation of ChP. In Notch-deficient mib mutants the first phase of this process is affected with premature GFP expression, deficient cell recruitment into TC and abnormal patterning of ChP. In Hedgehog-deficient smu mutants the second phase of the ChP morphogenesis lacks cell recruitment and TC cells undergo apoptosis. CONCLUSIONS/SIGNIFICANCE: This study is the first to demonstrate the formation of ChP in vivo revealing a role of Notch and Hedgehog signalling pathways during different developmental phases of this process.


Subject(s)
Choroid Plexus/physiology , Morphogenesis , Animals , Animals, Genetically Modified , Apoptosis , Blood-Brain Barrier , Cell Lineage , Embryo, Nonmammalian/physiology , Green Fluorescent Proteins/metabolism , Microscopy/methods , Models, Biological , Mutation , Receptors, Notch/metabolism , Signal Transduction , Zebrafish
4.
Development ; 132(16): 3587-96, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16033799

ABSTRACT

During gastrulation, optimal adhesion and receptivity to signalling cues are essential for cells to acquire new positions and identities via coordinated cell movements. T-box transcription factors and the Wnt signalling pathways are known to play important roles in these processes. Zebrafish tbx2b, a member of the TBX2 family, has previously been shown to be required for the specification of midline mesoderm. We show here that tbx2b transcripts are present during mid-gastrula before its expression is detected by whole-mount in situ hybridization. Isolated ectodermal cells deficient in Tbx2b have altered cell surface properties and the level of cadherins in these cells is lower. In chimaeric embryos generated by cell transplantation and single blastomere injections, Tbx2b-deficient cells are defective in cell movement in a cell-autonomous manner, resulting in their exclusion from the developing neural plate. Using this ;exclusion' phenotype as a screen, we show that Tbx2b acts within the context of Fz7 signalling. The exclusion of cells lacking T-box proteins in chimeras during development was demonstrated with other T-box genes and may indicate a general functional mechanism for T-box proteins.


Subject(s)
Cell Movement/physiology , DNA-Binding Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Morphogenesis , Signal Transduction/physiology , Transcription Factors/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Chimera/genetics , Chimera/metabolism , DNA-Binding Proteins/genetics , In Situ Hybridization , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , Phenotype , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , T-Box Domain Proteins , Transcription Factors/genetics , Wnt Proteins , Zebrafish/anatomy & histology , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL