Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38948861

ABSTRACT

Under stress conditions, cells reprogram their molecular machineries to mitigate damage and promote survival. Ubiquitin signaling is globally increased during oxidative stress, controlling protein fate and supporting stress defenses at several subcellular compartments. However, the rules driving subcellular ubiquitin localization to promote these concerted response mechanisms remain understudied. Here, we show that K63-linked ubiquitin chains, known to promote proteasome-independent pathways, accumulate primarily in non-cytosolic compartments during oxidative stress induced by sodium arsenite in mammalian cells. Our subcellular ubiquitin proteomic analyses of non-cytosolic compartments expanded 10-fold the pool of proteins known to be ubiquitinated during arsenite stress (2,046) and revealed their involvement in pathways related to immune signaling and translation control. Moreover, subcellular proteome analyses revealed proteins that are recruited to non-cytosolic compartments under stress, including a significant enrichment of helper ubiquitin-binding adaptors of the ATPase VCP that processes ubiquitinated substrates for downstream signaling. We further show that VCP recruitment to non-cytosolic compartments under arsenite stress occurs in a ubiquitin-dependent manner mediated by its adaptor NPLOC4. Additionally, we show that VCP and NPLOC4 activities are critical to sustain low levels of non-cytosolic K63-linked ubiquitin chains, supporting a cyclical model of ubiquitin conjugation and removal that is disrupted by cellular exposure to reactive oxygen species. This work deepens our understanding of the role of localized ubiquitin and VCP signaling in the basic mechanisms of stress response and highlights new pathways and molecular players that are essential to reshape the composition and function of the human subcellular proteome under dynamic environments.

2.
NPJ Breast Cancer ; 10(1): 65, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075068

ABSTRACT

Therapeutic resistance presents a significant hurdle in combating inflammatory breast cancer (IBC), adding to the complexity of its management. To investigate these mechanisms, we conducted a comprehensive analysis using transcriptomic and proteomic profiling in a preclinical model alone with correlates of treatment response in IBC patients. This included SUM149 cell lines derived from treatment-naïve patients, along with acquired drug resistance (rSUM149) and others in a state of resistance reversal (rrSUM149), aiming to uncover drug resistance networks. We identified specific ribosomal proteins associated with acquiring resistance. These correlated with elevated levels of molecular markers such as pERK, CDK1, XIAP, and SOD2. While resistance reversal in rrSUM149 cells largely normalized the expression profile, VIPER analysis revealed persistent alterations in ribosomal process-related proteins (AGO2, Exportin 1, RPL5), suggesting their continued involvement in drug resistance. Moreover, genes linked to ribosomal processes were significantly enriched (P < 0.001) among overexpressed genes in IBC patients (n = 87) who exhibited a pathological complete response (pCR) to neoadjuvant chemotherapy. Given the common hyperactivation of MAPK in IBC tumors, including rSUM149, we evaluated Merestinib, a multikinase inhibitor in clinical trials. It effectively targeted pERK and peIF4E pathways, suppressed downstream targets, induced cell death in drug-resistant rSUM149 cells, and showed synergistic effects with another tyrosine kinase inhibitor (Lapatinib) in parental cells. This underscores its significant impact on protein synthesis signaling, crucial for combating translational dependence in cancer cells. In summary, our study elucidates adaptive changes in IBC cells in response to therapy and treatment pauses, guiding precision medicine approaches for this challenging cancer type.

3.
J Proteome Res ; 23(8): 3716-3725, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39008777

ABSTRACT

Proteins undergo reversible S-acylation via a thioester linkage in vivo. S-palmitoylation, modification by C16:0 fatty acid, is a common S-acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used S-acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol. These assays generally require >500 µg of protein input material per sample and numerous reagent removal and washing steps, making them laborious and ill-suited for high throughput and low input applications. To overcome these limitations, we devised "Acyl-Trap", a suspension trap-based assay that utilizes a thiol-reactive quartz to enable buffer exchange and hydroxylamine-mediated S-acyl enrichment. We show that the method is compatible with protein-level detection of S-acylated proteins (e.g., H-Ras) as well as S-acyl site identification and quantification using "on trap" isobaric labeling and LC-MS/MS from as little as 20 µg of protein input. In mouse brain, Acyl-Trap identified 279 reported sites of S-acylation and 1298 previously unreported putative sites. Also described are conditions for long-term hydroxylamine storage, which streamline the assay. More generally, Acyl-Trap serves as a proof-of-concept for PTM-tailored suspension traps suitable for both traditional protein detection and chemoproteomic workflows.


Subject(s)
Cysteine , Tandem Mass Spectrometry , Acylation , Animals , Cysteine/chemistry , Cysteine/metabolism , Mice , Tandem Mass Spectrometry/methods , Hydroxylamine/chemistry , Chromatography, Liquid/methods , Lipoylation , Protein Processing, Post-Translational , Sulfhydryl Compounds/chemistry , Proteins/chemistry , Proteins/metabolism , Brain/metabolism
4.
Front Physiol ; 15: 1248276, 2024.
Article in English | MEDLINE | ID: mdl-38699144

ABSTRACT

Introduction: It may take decades to develop cardiovascular dysfunction following exposure to high doses of ionizing radiation from medical therapy or from nuclear accidents. Since astronauts may be exposed continually to a complex space radiation environment unlike that experienced on Earth, it is unresolved whether there is a risk to cardiovascular health during long-term space exploration missions. Previously, we have described that mice exposed to a single dose of simplified Galactic Cosmic Ray (GCR5-ion) develop cardiovascular dysfunction by 12 months post-radiation. Methods: To investigate the biological basis of this dysfunction, here we performed a quantitative mass spectrometry-based proteomics analysis of heart tissue (proteome and phosphoproteome) and plasma (proteome only) from these mice at 8 months post-radiation. Results: Differentially expressed proteins (DEPs) for irradiated versus sham irradiated samples (fold-change ≥1.2 and an adjusted p-value of ≤0.05) were identified for each proteomics data set. For the heart proteome, there were 87 significant DEPs (11 upregulated and 76 downregulated); for the heart phosphoproteome, there were 60 significant differentially phosphorylated peptides (17 upregulated and 43 downregulated); and for the plasma proteome, there was only one upregulated protein. A Gene Set Enrichment Analysis (GSEA) technique that assesses canonical pathways from BIOCARTA, KEGG, PID, REACTOME, and WikiPathways revealed significant perturbation in pathways in each data set. For the heart proteome, 166 pathways were significantly altered (36 upregulated and 130 downregulated); for the plasma proteome, there were 73 pathways significantly altered (25 upregulated and 48 downregulated); and for the phosphoproteome, there were 223 pathways significantly affected at 0.1 adjusted p-value cutoff. Pathways related to inflammation were the most highly perturbed in the heart and plasma. In line with sustained inflammation, neutrophil extracellular traps (NETs) were demonstrated to be increased in GCR5-ion irradiated hearts at 12-month post irradiation. NETs play a fundamental role in combating bacterial pathogens, modulating inflammatory responses, inflicting damage on healthy tissues, and escalating vascular thrombosis. Discussion: These findings suggest that a single exposure to GCR5-ion results in long-lasting changes in the proteome and that these proteomic changes can potentiate acute and chronic health issues for astronauts, such as what we have previously described with late cardiac dysfunction in these mice.

5.
bioRxiv ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38585928

ABSTRACT

Proteins undergo reversible S-acylation via a thioester linkage in vivo. S-palmitoylation, modification by C16:0 fatty acid, is a common S-acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used S-acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol. These assays generally require >500 micrograms of protein input material per sample and numerous reagent removal and washing steps, making them laborious and ill-suited for high throughput and low input applications. To overcome these limitations, we devised "Acyl-Trap", a suspension trap-based assay that utilizes a thiol-reactive quartz to enable buffer exchange and hydroxylamine-mediated S-acyl enrichment. We show that the method is compatible with protein-level detection of S-acylated proteins (e.g. H-Ras) as well as S-acyl site identification and quantification using "on trap" isobaric labeling and LC-MS/MS from as little as 20 micrograms of protein input. In mouse brain, Acyl-Trap identified 279 reported sites of S-acylation and 1298 previously unreported putative sites. Also described are conditions for long-term hydroxylamine storage, which streamlines the assay. More generally, Acyl-Trap serves as a proof-of-concept for PTM-tailored suspension traps suitable for both traditional protein detection and chemoproteomic workflows.

6.
J Proteome Res ; 23(3): 1039-1048, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38353026

ABSTRACT

Sickle cell disease (SCD) is characterized by red blood cell sickling, vaso-occlusion, hemolytic anemia, damage to multiple organ systems, and, as a result, shortened life expectancy. Sickle cell disease nephropathy (SCDN) and pulmonary hypertension (pHTN) are common and frequently co-occurring complications of SCD; both are associated with markedly accelerated mortality. To identify candidate circulating biomarkers of SCDN and pHTN, we used mass spectrometry to quantify the relative abundance of >1000 proteins in plasma samples from 189 adults with SCD from the Outcome Modifying Genes in SCD (OMG-SCD) cohort (ProteomeXchange identifier PXD048716). Forty-four proteins were differentially abundant in SCDN, most significantly cystatin-C and collagen α-1(XVIII) chain (COIA1), and 55 proteins were dysregulated in patients with SCDN and pHTN, most significantly insulin-like growth factor-binding protein 6 (IBP6). Network analysis identified a module of 133 coregulated proteins significantly associated with SCDN, that was enriched for extracellular matrix proteins, insulin-like growth factor binding proteins, cell adhesion proteins, EGF-like calcium binding proteins, and several cadherin family members. Collectively, these data provide a comprehensive understanding of plasma protein changes in SCDN and pHTN which validate numerous studies of chronic kidney disease and suggest shared profiles of protein disruption in kidney dysfunction and pHTN among SCD patients.


Subject(s)
Anemia, Sickle Cell , Hypertension, Pulmonary , Vascular Diseases , Adult , Humans , Hypertension, Pulmonary/genetics , Proteomics , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/genetics , Erythrocytes , Collagen Type I
7.
Clin J Am Soc Nephrol ; 18(11): 1416-1425, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37533140

ABSTRACT

BACKGROUND: Sickle cell trait affects approximately 8% of Black individuals in the United States, along with many other individuals with ancestry from malaria-endemic regions worldwide. While traditionally considered a benign condition, recent evidence suggests that sickle cell trait is associated with lower eGFR and higher risk of kidney diseases, including kidney failure. The mechanisms underlying these associations remain poorly understood. We used proteomic profiling to gain insight into the pathobiology of sickle cell trait. METHODS: We measured proteomics ( N =1285 proteins assayed by Olink Explore) using baseline plasma samples from 592 Black participants with sickle cell trait and 1:1 age-matched Black participants without sickle cell trait from the prospective Women's Health Initiative cohort. Age-adjusted linear regression was used to assess the association between protein levels and sickle cell trait. RESULTS: In age-adjusted models, 35 proteins were significantly associated with sickle cell trait after correction for multiple testing. Several of the sickle cell trait-protein associations were replicated in Black participants from two independent cohorts (Atherosclerosis Risk in Communities study and Jackson Heart Study) assayed using an orthogonal aptamer-based proteomic platform (SomaScan). Many of the validated sickle cell trait-associated proteins are known biomarkers of kidney function or injury ( e.g. , hepatitis A virus cellular receptor 1 [HAVCR1]/kidney injury molecule-1 [KIM-1], uromodulin [UMOD], ephrins), related to red cell physiology or hemolysis (erythropoietin [EPO], heme oxygenase 1 [HMOX1], and α -hemoglobin stabilizing protein) and/or inflammation (fractalkine, C-C motif chemokine ligand 2/monocyte chemoattractant protein-1 [MCP-1], and urokinase plasminogen activator surface receptor [PLAUR]). A protein risk score constructed from the top sickle cell trait-associated biomarkers was associated with incident kidney failure among those with sickle cell trait during Women's Health Initiative follow-up (odds ratio, 1.32; 95% confidence interval, 1.10 to 1.58). CONCLUSIONS: We identified and replicated the association of sickle cell trait with a number of plasma proteins related to hemolysis, kidney injury, and inflammation.


Subject(s)
Renal Insufficiency , Sickle Cell Trait , Humans , Female , United States , Proteome , Prospective Studies , Hemolysis , Proteomics , Biomarkers , Inflammation
8.
Laryngoscope Investig Otolaryngol ; 8(1): 113-119, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36846407

ABSTRACT

Background: Pharyngocutaneous fistula (PCF) and salivary leaks are well known complications of head and neck surgery. The medical management of PCF has included the use of octreotide without a well-defined understanding of its therapeutic mechanism. We hypothesized that octreotide induces alterations in the saliva proteome and that these alterations may provide insight into the mechanism of action underlying improved PCF healing. We undertook an exploratory pilot study in healthy controls that involved collecting saliva before and after a subcutaneous injection of octreotide and performing proteomic analysis to determine the effects of octreotide. Methods: Four healthy adult participants provided saliva samples before and after subcutaneous injection of octreotide. A mass-spectrometry based workflow optimized for the quantitative proteomic analysis of biofluids was then employed to analyze changes in salivary protein abundance after octreotide administration. Results: There were 3076 human, 332 Streptococcus mitis, 102 G. haemolyans, and 42 Granulicatella adiacens protein groups quantified in saliva samples. A paired statistical analysis was performed using the generalized linear model (glm) function in edgeR. There were and ~300 proteins that had a p < .05 between the pre- and post-octreotide groups ~50 proteins with an FDR-corrected p < .05 between pre- and post-groups. These results were visualized using a volcano plot after filtering on proteins quantified by 2 more or unique precursors. Both human and bacterial proteins were among the proteins altered by octreotide treatment. Notably, four isoforms of the human cystatins, belonging to a family of cysteine proteases, that had significantly lower abundance after treatment. Conclusion: This pilot study demonstrated octreotide-induced downregulation of cystatins. By downregulation of cystatins in the saliva, there is decreased inhibition of cysteine proteases such as Cathepsin S. This results in increased cysteine protease activity that has been linked to enhanced angiogenic response, cell proliferation and migration that have resulted in improved wound healing. These insights provide first steps at furthering our understanding of octreotide's effects on saliva and reports of improved PCF healing.

9.
Am J Physiol Renal Physiol ; 324(4): F387-F403, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36794752

ABSTRACT

Chronic kidney disease (CKD) of uncertain etiology (CKDu) is a global health concern affecting tropical farming communities. CKDu is not associated with typical risk factors (e.g., diabetes) and strongly correlates with environmental drivers. To gain potential insights into disease etiology and diagnosis, here we report the first urinary proteome comparing patients with CKDu and non-CKDu controls from Sri Lanka. We found 944 differentially abundant proteins. In silico analyses identified 636 proteins of likely kidney and urogenital origin. As expected, renal tubular injury in patients with CKDu was evinced by increases in albumin, cystatin C, and ß2-microglobulin. However, several proteins typically elevated under CKD, including osteopontin and α-N-acetylglucosaminidase, were decreased in patients with CKDu. Furthermore, urinary excretion of aquaporins found higher in CKD was lower in CKDu. Comparisons with previous CKD urinary proteome datasets revealed a unique proteome for CKDu. Notably, the CKDu urinary proteome was relatively similar to that of patients with mitochondrial diseases. Furthermore, we report a decrease in endocytic receptor proteins responsible for protein reabsorption (megalin and cubilin) that correlated with an increase in abundance of 15 of their cognate ligands. Functional pathway analyses identified kidney-specific differentially abundant proteins in patients with CKDu denoted significant changes in the complement cascade and coagulation systems, cell death, lysosomal function, and metabolic pathways. Overall, our findings provide potential early detection markers to diagnose and distinguish CKDu and warrant further analyses on the role of lysosomal, mitochondrial, and protein reabsorption processes and their link to the complement system and lipid metabolism in CKDu onset and progression.NEW & NOTEWORTHY CKDu is a global health concern debilitating a number of tropical rural farming communities. In the absence of typical risk factors like diabetes and hypertension and the lack of molecular markers, it is crucial to identify potential early disease markers. Here, we detail the first urinary proteome profile to distinguish CKDu from CKD. Our data and in silico pathway analyses infer the roles of mitochondrial, lysosomal, and protein reabsorption processes in disease onset and progression.


Subject(s)
Lysosomes , Mitochondria , Proteome , Urine , Urine/chemistry , Proteome/analysis , Mitochondria/metabolism , Lysosomes/metabolism , Proteins/metabolism , Renal Insufficiency, Chronic , Computer Simulation , Cell Death , Metabolic Networks and Pathways , Lipid Metabolism , Complement System Proteins
10.
Ann Surg ; 275(6): 1094-1102, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35258509

ABSTRACT

OBJECTIVE: To design and establish a prospective biospecimen repository that integrates multi-omics assays with clinical data to study mechanisms of controlled injury and healing. BACKGROUND: Elective surgery is an opportunity to understand both the systemic and focal responses accompanying controlled and well-characterized injury to the human body. The overarching goal of this ongoing project is to define stereotypical responses to surgical injury, with the translational purpose of identifying targetable pathways involved in healing and resilience, and variations indicative of aberrant peri-operative outcomes. METHODS: Clinical data from the electronic medical record combined with large-scale biological data sets derived from blood, urine, fecal matter, and tissue samples are collected prospectively through the peri-operative period on patients undergoing 14 surgeries chosen to represent a range of injury locations and intensities. Specimens are subjected to genomic, transcriptomic, proteomic, and metabolomic assays to describe their genetic, metabolic, immunologic, and microbiome profiles, providing a multidimensional landscape of the human response to injury. RESULTS: The highly multiplexed data generated includes changes in over 28,000 mRNA transcripts, 100 plasma metabolites, 200 urine metabolites, and 400 proteins over the longitudinal course of surgery and recovery. In our initial pilot dataset, we demonstrate the feasibility of collecting high quality multi-omic data at pre- and postoperative time points and are already seeing evidence of physiologic perturbation between timepoints. CONCLUSIONS: This repository allows for longitudinal, state-of-the-art geno-mic, transcriptomic, proteomic, metabolomic, immunologic, and clinical data collection and provides a rich and stable infrastructure on which to fuel further biomedical discovery.


Subject(s)
Computational Biology , Proteomics , Genomics , Humans , Metabolomics , Prospective Studies , Proteomics/methods
11.
Nat Commun ; 12(1): 1680, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33723250

ABSTRACT

Branched-chain amino acids (BCAA) and their cognate α-ketoacids (BCKA) are elevated in an array of cardiometabolic diseases. Here we demonstrate that the major metabolic fate of uniformly-13C-labeled α-ketoisovalerate ([U-13C]KIV) in the heart is reamination to valine. Activation of cardiac branched-chain α-ketoacid dehydrogenase (BCKDH) by treatment with the BCKDH kinase inhibitor, BT2, does not impede the strong flux of [U-13C]KIV to valine. Sequestration of BCAA and BCKA away from mitochondrial oxidation is likely due to low levels of expression of the mitochondrial BCAA transporter SLC25A44 in the heart, as its overexpression significantly lowers accumulation of [13C]-labeled valine from [U-13C]KIV. Finally, exposure of perfused hearts to levels of BCKA found in obese rats increases phosphorylation of the translational repressor 4E-BP1 as well as multiple proteins in the MEK-ERK pathway, leading to a doubling of total protein synthesis. These data suggest that elevated BCKA levels found in obesity may contribute to pathologic cardiac hypertrophy via chronic activation of protein synthesis.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Heart/physiology , Hemiterpenes/metabolism , Keto Acids/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Obesity/metabolism , Rats , Valine/metabolism
12.
Cell Chem Biol ; 28(1): 14-25.e9, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33176158

ABSTRACT

The benzdiimidazole NAB2 rescues α-synuclein-associated trafficking defects associated with early onset Parkinson's disease in a Nedd4-dependent manner. Despite identification of E3 ubiquitin ligase Nedd4 as a putative target of NAB2, its molecular mechanism of action has not been elucidated. As such, the effect of NAB2 on Nedd4 activity and specificity was interrogated through biochemical, biophysical, and proteomic analyses. NAB2 was found to bind Nedd4 (KDapp = 42 nM), but this binding is side chain mediated and does not alter its conformation or ubiquitination kinetics in vitro. Nedd4 co-localizes with trafficking organelles, and NAB2 exposure did not alter its co-localization. Ubiquitin enrichment coupled proteomics revealed that NAB2 stimulates ubiquitination of trafficking-associated proteins, most likely through modulating the substrate specificity of Nedd4, providing a putative protein network involved in the NAB2 mechanism and revealing trafficking scaffold protein TFG as a Nedd4 substrate.


Subject(s)
Nedd4 Ubiquitin Protein Ligases/antagonists & inhibitors , Parkinson Disease/drug therapy , Small Molecule Libraries/pharmacology , Cell Line, Tumor , Female , Humans , Nedd4 Ubiquitin Protein Ligases/isolation & purification , Nedd4 Ubiquitin Protein Ligases/metabolism , Parkinson Disease/metabolism , Signal Transduction/drug effects
13.
Blood Transfus ; 18(6): 454-464, 2020 11.
Article in English | MEDLINE | ID: mdl-33000752

ABSTRACT

BACKGROUND: As a pooled donor blood product, cryoprecipitate (cryo) carries risks of pathogen transmission. Pathogen inactivation (PI) improves the safety of cryoprecipitate, but its effects on haemostatic properties remain unclear. This study investigated protein expression in samples of pathogen inactivated cryoprecipitate (PI-cryo) using non-targeted quantitative proteomics and in vitro haemostatic capacity of PI-cryo. MATERIALS AND METHODS: Whole blood (WB)- and apheresis (APH)-derived plasma was subject to PI with INTERCEPT® Blood System (Cerus Corporation, Concord, CA, USA) and cryo was prepared from treated plasma. Protein levels in PI-cryo and paired controls were quantified using liquid chromatography-tandem mass spectrometry. Functional haemostatic properties of PI-cryo were assessed using a microparticle (MP) prothrombinase assay, thrombin generation assay, and an in vitro coagulopathy model subjected to thromboelastometry. RESULTS: Over 300 proteins were quantified across paired PI-cryo and controls. PI did not alter the expression of coagulation factors, but levels of platelet-derived proteins and platelet-derived MPs were markedly lower in the WB PI-cryo group. Compared to controls, WB (but not APH) cryo samples demonstrated significantly lower MP prothrombinase activity, prolonged clotting time, and lower clot firmness on thromboelastometry after PI. However, PI did not affect overall thrombin generation variables in either group. DISCUSSION: Data from this study suggest that PI via INTERCEPT® Blood System does not significantly impact the coagulation factor content or function of cryo but reduces the higher MP content in WB-derived cryo. PI-cryo products may confer benefits in reducing pathogen transmission without affecting haemostatic function, but further in vivo assessment is warranted.


Subject(s)
Blood Proteins/drug effects , Blood Proteins/radiation effects , Blood Safety , Blood-Borne Infections/prevention & control , Blood-Borne Pathogens/drug effects , Blood-Borne Pathogens/radiation effects , Microbial Viability , Plasma/drug effects , Plasma/radiation effects , Virus Inactivation , Blood Component Removal , Blood Platelets/chemistry , Blood Preservation , Blood Proteins/analysis , Cell-Derived Microparticles/enzymology , Cryopreservation , Furocoumarins/pharmacology , Furocoumarins/radiation effects , Humans , Microbial Viability/drug effects , Microbial Viability/radiation effects , Photochemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/radiation effects , Plasma/microbiology , Plasma/virology , Thrombelastography , Thrombin/biosynthesis , Thromboplastin/analysis , Ultraviolet Rays , Virus Inactivation/drug effects , Virus Inactivation/radiation effects
14.
Cell Host Microbe ; 27(1): 129-139.e4, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31901521

ABSTRACT

Bacteria masterfully co-opt and subvert host signal transduction. As a paradigmatic example, Salmonella uses two type-3 secretion systems to inject effector proteins that facilitate Salmonella entry, establishment of an intracellular niche, and modulation of immune responses. We previously demonstrated that the Salmonella anti-inflammatory response activator SarA (Stm2585, GogC, PagJ, SteE) activates the host transcription factor STAT3 to drive expression of immunomodulatory STAT3-targets. Here, we demonstrate-by sequence, function, and biochemical measurement-that SarA mimics the cytoplasmic domain of glycoprotein 130 (gp130, IL6ST). SarA is phosphorylated at a YxxQ motif, facilitating binding to STAT3 with greater affinity than gp130. Departing from canonical gp130 signaling, SarA function is JAK-independent but requires GSK-3, a key regulator of metabolism and development. Our results reveal that SarA undergoes host phosphorylation to recruit a STAT3-activating complex, circumventing cytokine receptor activation. Effector mimicry of gp130 suggests GSK-3 can regulate normal cytokine signaling, potentially enabling metabolic and immune crosstalk.


Subject(s)
Bacterial Proteins/metabolism , Glycogen Synthase Kinase 3/metabolism , Molecular Mimicry/immunology , STAT3 Transcription Factor/metabolism , Trans-Activators/metabolism , Cell Line , Cytokine Receptor gp130/metabolism , Cytokines/metabolism , Humans , Immunity, Innate , Receptors, Cytokine/metabolism , STAT3 Transcription Factor/immunology , Salmonella , Signal Transduction
15.
JCI Insight ; 5(1)2020 01 16.
Article in English | MEDLINE | ID: mdl-31941839

ABSTRACT

The T helper 2 (Th2) inflammatory cytokine interleukin-13 (IL-13) has been associated with both obstructive and fibrotic lung diseases; however, its specific effect on the epithelial stem cells in the gas exchange compartment of the lung (alveolar space) has not been explored. Here, we used in vivo lung models of homeostasis and repair, ex vivo organoid platforms, and potentially novel quantitative proteomic techniques to show that IL-13 disrupts the self-renewal and differentiation of both murine and human type 2 alveolar epithelial cells (AEC2s). Significantly, we find that IL-13 promotes ectopic expression of markers typically associated with bronchiolar airway cells and commonly seen in the alveolar region of lung tissue from patients with idiopathic pulmonary fibrosis. Furthermore, we identify a number of proteins that are differentially secreted by AEC2s in response to IL-13 and may provide biomarkers to identify subsets of patients with pulmonary disease driven by "Th2-high" biology.


Subject(s)
Alveolar Epithelial Cells/metabolism , Interleukin-13/metabolism , Stem Cells/metabolism , Alveolar Epithelial Cells/drug effects , Animals , Cell Differentiation , Cytokines/metabolism , Epithelial Cells/metabolism , Female , Homeostasis , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Interleukin-13/genetics , Interleukin-13/pharmacology , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Organoids/metabolism , Proteomics , Th2 Cells/metabolism , Uteroglobin/metabolism
16.
J Biol Chem ; 294(36): 13336-13343, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31320475

ABSTRACT

Dynamic control of thioredoxin (Trx) oxidoreductase activity is essential for balancing the need of cells to rapidly respond to oxidative/nitrosative stress and to temporally regulate thiol-based redox signaling. We have previously shown that cytokine stimulation of the respiratory epithelium induces a precipitous decline in cell S-nitrosothiol, which depends upon enhanced Trx activity and proteasome-mediated degradation of Txnip (thioredoxin-interacting protein). We now show that tumor necrosis factor-α-induced Txnip degradation in A549 respiratory epithelial cells is regulated by the extracellular signal-regulated protein kinase (ERK) mitogen-activated protein kinase pathway and that ERK inhibition augments both intracellular reactive oxygen species and S-nitrosothiol. ERK-dependent Txnip ubiquitination and proteasome degradation depended upon phosphorylation of a PXTP motif threonine (Thr349) located within the C-terminal α-arrestin domain and proximal to a previously characterized E3 ubiquitin ligase-binding site. Collectively, these findings demonstrate the ERK mitogen-activated protein kinase pathway to be integrally involved in regulating Trx oxidoreductase activity and that the regulation of Txnip lifetime via ERK-dependent phosphorylation is an important mediator of this effect.


Subject(s)
Carrier Proteins/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Proteasome Endopeptidase Complex/metabolism , Thioredoxin-Disulfide Reductase/metabolism , A549 Cells , Humans , Mass Spectrometry , Tumor Cells, Cultured
17.
J Proteome Res ; 18(8): 3032-3041, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31267741

ABSTRACT

Bispecific single chain antibody fragments (bi-scFv) represent an emerging class of biotherapeutics. We recently developed a fully human bi-scFv (EGFRvIII:CD3 bi-scFv) with the goal of redirecting CD3-expressing T cells to recognize and destroy malignant, EGFRvIII-expressing glioma. In mice, we showed that EGFRvIII:CD3 bi-scFv effectively treats orthotopic patient-derived malignant glioma and syngeneic glioblastoma. Here, we developed a targeted assay for pharmacokinetic (PK) analysis of EGFRvIII:CD3 bi-scFv, a necessary step in the drug development process. Using microflow liquid chromatography coupled to a high resolution parallel reaction monitoring mass spectrometry, and data analysis in Skyline, we developed a bottom-up proteomic assay for quantification of EGFRvIII:CD3 bi-scFv in both plasma and whole blood. Importantly, a protein calibrator, along with stable isotope-labeled EGFRvIII:CD3 bi-scFv protein, were used for absolute quantification. A PK analysis in a CD3 humanized mouse revealed that EGFRvIII:CD3 bi-scFv in plasma and whole blood has an initial half-life of ∼8 min and a terminal half-life of ∼2.5 h. Our results establish a sensitive, high-throughput assay for direct quantification of EGFRvIII:CD3 bi-scFv without the need for immunoaffinity enrichment. Moreover, these pharmacokinetic parameters will guide drug optimization and dosing regimens in future IND-enabling and phase I studies of EGFRvIII:CD3 bi-scFv.


Subject(s)
Antibodies, Bispecific/blood , CD3 Complex/blood , ErbB Receptors/blood , Glioblastoma/blood , Animals , Antibodies, Bispecific/pharmacokinetics , Antibodies, Bispecific/therapeutic use , CD3 Complex/pharmacokinetics , CD3 Complex/therapeutic use , Cell Line, Tumor , Chromatography, Liquid , ErbB Receptors/pharmacokinetics , ErbB Receptors/therapeutic use , Glioblastoma/immunology , Glioblastoma/therapy , Humans , Mass Spectrometry , Mice , Proteomics/methods , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
18.
Evol Dev ; 21(4): 188-204, 2019 07.
Article in English | MEDLINE | ID: mdl-31102332

ABSTRACT

A dramatic life history switch that has evolved numerous times in marine invertebrates is the transition from planktotrophic (feeding) to lecithotrophic (nonfeeding) larval development-an evolutionary tradeoff with many important developmental and ecological consequences. To attain a more comprehensive understanding of the molecular basis for this switch, we performed untargeted lipidomic and proteomic liquid chromatography-tandem mass spectrometry on eggs and larvae from three sea urchin species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph Heliocidaris tuberculata, and the distantly related planktotroph Lytechinus variegatus. We identify numerous molecular-level changes possibly associated with the evolution of lecithotrophy in H. erythrogramma. We find the massive lipid stores of H. erythrogramma eggs are largely composed of low-density, diacylglycerol ether lipids that, contrary to expectations, appear to support postmetamorphic development and survivorship. Rapid premetamorphic development in this species may instead be powered by upregulated carbohydrate metabolism or triacylglycerol metabolism. We also find proteins involved in oxidative stress regulation are upregulated in H. erythrogramma eggs, and apoB-like lipid transfer proteins may be important for echinoid oogenic nutrient provisioning. These results demonstrate how mass spectrometry can enrich our understanding of life history evolution and organismal diversity by identifying specific molecules associated with distinct life history strategies and prompt new hypotheses about how and why these adaptations evolve.


Subject(s)
Biological Evolution , Ovum/physiology , Sea Urchins/genetics , Sea Urchins/physiology , Adaptation, Physiological , Animals , Chromatography, Liquid/veterinary , Lipidomics , Tandem Mass Spectrometry/veterinary
19.
Am J Respir Cell Mol Biol ; 60(1): 58-67, 2019 01.
Article in English | MEDLINE | ID: mdl-30156431

ABSTRACT

Human rhinovirus (RV), the major cause of the common cold, triggers the majority of acute airway exacerbations in patients with asthma and chronic obstructive pulmonary disease. Nitric oxide, and the related metabolite S-nitrosoglutathione, are produced in the airway epithelium via nitric oxide synthase (NOS) 2 and have been shown to function in host defense against RV infection. We hypothesized that inhibitors of the S-nitrosoglutathione-metabolizing enzyme, S-nitrosoglutathione reductase (GSNOR), might potentiate the antiviral properties of airway-derived NOS2. Using in vitro models of RV-A serotype 16 (RV-A16) and mNeonGreen-H1N1pr8 infection of human airway epithelial cells, we found that treatment with a previously characterized GSNOR inhibitor (4-[[2-[[(3-cyanophenyl)methyl]thio]-4-oxothieno-[3,2-d]pyrimidin-3(4H)-yl]methyl]-benzoic acid; referred to as C3m) decreased RV-A16 replication and expression of downstream proinflammatory and antiviral mediators (e.g., RANTES [regulated upon activation, normal T cell expressed and secreted], CXCL10, and Mx1), and increased Nrf2 (nuclear factor erythroid 2-related factor 2)-dependent genes (e.g., SQSTM1 and TrxR1). In contrast, C3m had no effect on influenza virus H1N1pr8 replication. Moreover, a structurally dissimilar GSNOR inhibitor (N6022) did not alter RV replication, suggesting that the properties of C3m may be specific to rhinovirus owing to an off-target effect. Consistent with this, C3m antiviral effects were not blocked by either NOS inhibition or GSNOR knockdown but appeared to be mediated by reduced intercellular adhesion molecule 1 transcription and increased shedding of soluble intercellular adhesion molecule 1 protein. Collectively these data show that C3m has novel antirhinoviral properties that may synergize with, but are unrelated to, its GSNOR inhibitor activity.


Subject(s)
Aldehyde Oxidoreductases/antagonists & inhibitors , Bronchi/drug effects , Enzyme Inhibitors/pharmacology , Epithelial Cells/drug effects , Inflammation/drug therapy , Picornaviridae Infections/drug therapy , Rhinovirus/drug effects , Virus Replication/drug effects , Benzamides/pharmacology , Bronchi/metabolism , Bronchi/virology , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Inflammation/metabolism , Inflammation/virology , Nitric Oxide Synthase Type II/metabolism , Picornaviridae Infections/metabolism , Picornaviridae Infections/virology , Pyrroles/pharmacology
20.
Cancer Res ; 78(22): 6462-6472, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30224375

ABSTRACT

UBE2N is a K63-specific ubiquitin conjugase linked to various immune disorders and cancer. Here, we demonstrate that UBE2N and its partners UBE2V1 and UBE2V2 are highly expressed in malignant melanoma. Silencing of UBE2N and its partners significantly decreased melanoma cell proliferation and subcutaneous tumor growth. This was accompanied by increased expression of E-cadherin, p16, and MC1R and decreased expression of melanoma malignancy markers including SOX10, Nestin, and ABCB5. Mass spectrometry-based phosphoproteomic analysis revealed that UBE2N loss resulted in distinct alterations to the signaling landscape: MEK/ERK signaling was impaired, FRA1 and SOX10 gene regulators were downregulated, and p53 and p16 tumor suppressors were upregulated. Similar to inhibition of UBE2N and MEK, silencing FRA1 decreased SOX10 expression and cell proliferation. Conversely, exogenous expression of active FRA1 increased pMEK and SOX10 expression, and restored anchorage-independent cell growth of cells with UBE2N loss. Systemic delivery of NSC697923, a small-molecule inhibitor of UBE2N, significantly decreased melanoma xenograft growth. These data indicate that UBE2N is a novel regulator of the MEK/FRA1/SOX10 signaling cascade and is indispensable for malignant melanoma growth. Our findings establish the basis for targeting UBE2N as a potential treatment strategy for melanoma.Significance: These findings identify ubiquitin conjugase UBE2N and its variant partners as novel regulators of MAPK signaling and potential therapeutic targets in melanoma. Cancer Res; 78(22); 6462-72. ©2018 AACR.


Subject(s)
MAP Kinase Kinase 1/metabolism , Melanoma/metabolism , Proto-Oncogene Proteins c-fos/metabolism , SOXE Transcription Factors/metabolism , Skin Neoplasms/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Animals , Cadherins/metabolism , Cell Proliferation , Cell Survival , Disease Progression , Gene Silencing , Humans , Melanocytes/metabolism , Melanoma, Experimental , Mice , Mice, SCID , Neoplasm Transplantation , Proteomics , Signal Transduction , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL