Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Ecol ; 29(7): 1219-1234, 2020 04.
Article in English | MEDLINE | ID: mdl-31710745

ABSTRACT

Sympatric speciation occurs without geographical barriers and is thought to often be driven by ecological specialization of individuals that eventually diverge genetically and phenotypically. Distinct morphologies between sympatric populations occupying different niches have been interpreted as such differentiating adaptive phenotypes, yet differences in performance and thus likely adaptiveness between them were rarely tested. Here, we investigated if divergent body shapes of two sympatric crater lake cichlid species from Nicaragua, one being a shore-associated (benthic) species while the other prefers the open water zones (limnetic), affect cruising (Ucrit ) and sprinting (Usprint ) swimming abilities - performances particularly relevant to their respective lifestyles. Furthermore, we investigated species differences in oxygen consumption (MO2 ) across different swimming speeds and compare gene expression in gills and white muscle at rest and during exercise. We found a superior cruising ability in the limnetic Amphilophus zaliosus compared to the benthic Amphilophus astorquii, while sprinting was not different, suggesting that their distinct morphologies affect swimming performance. Increased cruising swimming ability in A. zaliosus was linked to a higher oxygen demand during activity (but not rest), indicating different metabolic rates during exercise - a hypothesis supported by coinciding gene expression patterns of gill transcriptomes. We identified differentially expressed genes linked to swimming physiology, regulation of swimming behaviour and oxygen intake. A combination of physiological and morphological differences may thus underlie adaptations to these species' distinct niches. This complex ecological specialization probably resulted in morphological and physiological trade-offs that contributed to the rapid establishment and maintenance of divergence with gene flow.


Subject(s)
Cichlids/genetics , Cichlids/physiology , Swimming/physiology , Sympatry , Adaptation, Physiological , Animals , Body Size , Cichlids/classification , Gene Expression , Gills , Lakes , Nicaragua , Oxygen Consumption , Phenotype , Species Specificity , Transcriptome
2.
Genome Biol Evol ; 11(6): 1644-1657, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31124568

ABSTRACT

The mechanisms of speciation without geographic isolation (i.e., sympatric speciation) remain debated. This is due in part to the fact that the genomic landscape that could promote or hinder species divergence in the presence of gene flow is still largely unknown. However, intensive research is now centered on understanding the genetic architecture of adaptive traits associated with this process as well as how gene expression might affect these traits. Here, using RNA-Seq data, we investigated gene expression of sympatrically speciating benthic and limnetic Neotropical cichlid fishes at two developmental stages. First, we identified groups of coexpressed genes (modules) at each stage. Although there are a few large and well-preserved modules, most of the other modules are not preserved across life stages. Second, we show that later in development more and larger coexpression modules are associated with divergence between benthic and limnetic fish compared with the earlier life stage. This divergence between benthic and limnetic fish in coexpression mirrors divergence in overall expression between benthic and limnetic fish, which is more pronounced later in life. Our results reveal that already at 1-day posthatch benthic and limnetic fish diverge in (co)expression, and that this divergence becomes more substantial when fish are free-swimming but still unlikely to have divergent swimming and feeding habits. More importantly, our study describes how the coexpression of several genes through development, as opposed to individual genes, is associated with benthic-limnetic species differences, and how two morphogenetic trajectories diverge as fish grow older.


Subject(s)
Cichlids/classification , Cichlids/genetics , Animals , Cichlids/growth & development , Genetic Speciation , Lakes , Nicaragua , Quantitative Trait Loci , Species Specificity , Sympatry , Transcriptome
3.
Genome Biol Evol ; 8(5): 1543-55, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27189980

ABSTRACT

Cichlid fishes are an ideal model system for studying biological diversification because they provide textbook examples of rapid speciation. To date, there has been little focus on the role of gene regulation during cichlid speciation. However, in recent years, gene regulation has been recognized as a powerful force linking diversification in gene function to speciation. Here, we investigated the potential role of miRNA regulation in the diversification of six cichlid species of the Midas cichlid lineage (Amphilophus spp.) inhabiting the Nicaraguan crater lakes. Using several genomic resources, we inferred 236 Midas miRNA genes that were used to predict the miRNA target sites on 8,232 Midas 3'-UTRs. Using population genomic calculations of SNP diversity, we found the miRNA genes to be more conserved than protein coding genes. In contrast to what has been observed in other cichlid fish, but similar to what has been typically found in other groups, we observed genomic signatures of purifying selection on the miRNA targets by comparing these sites with the less conserved nontarget portion of the 3'-UTRs. However, in one species pair that has putatively speciated sympatrically in crater Lake Apoyo, we recovered a different pattern of relaxed purifying selection and high genetic divergence at miRNA targets. Our results suggest that sequence evolution at miRNA binding sites could be a critical genomic mechanism contributing to the rapid phenotypic evolution of Midas cichlids.


Subject(s)
Cichlids/genetics , Evolution, Molecular , Genetic Speciation , MicroRNAs/genetics , Animals , DNA, Mitochondrial , Microsatellite Repeats/genetics , Nicaragua , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Species Specificity
4.
Nat Commun ; 5: 5168, 2014 Oct 27.
Article in English | MEDLINE | ID: mdl-25346277

ABSTRACT

Fundamental to understanding how biodiversity arises and adapts is whether evolution is predictable in the face of stochastic genetic and demographic factors. Here we show rapid parallel evolution across two closely related but geographically isolated radiations of Nicaraguan crater lake cichlid fishes. We find significant morphological, ecological and genetic differentiation between ecomorphs in sympatry, reflected primarily in elongated versus high-bodied shape, differential ecological niche use and genetic differentiation. These eco-morphological divergences are significantly parallel across radiations. Based on 442,644 genome-wide single nucleotide polymorphisms, we identify strong support for the monophyly of, and subsequent sympatric divergence within, each radiation. However, the order of speciation differs across radiations; in one lake the limnetic ecomorph diverged first while in the other a benthic ecomorph. Overall our results demonstrate that complex parallel phenotypes can evolve very rapidly and repeatedly in similar environments, probably due to natural selection, yet this evolution can proceed along different evolutionary genetic routes.


Subject(s)
Biological Evolution , Cichlids/genetics , Lakes , Animals , Cichlids/anatomy & histology , Genetic Speciation , Genetics, Population , Likelihood Functions , Nicaragua , Phenotype , Phylogeny , Principal Component Analysis
5.
PLoS One ; 9(4): e95027, 2014.
Article in English | MEDLINE | ID: mdl-24733403

ABSTRACT

Gut bacterial communities are now known to influence a range of fitness related aspects of organisms. But how different the microbial community is in closely related species, and if these differences can be interpreted as adaptive is still unclear. In this study we compared microbial communities in two sets of closely related sympatric crater lake cichlid fish species pairs that show similar adaptations along the limnetic-benthic axis. The gut microbial community composition differs in the species pair inhabiting the older of two crater lakes. One major difference, relative to other fish, is that in these cichlids that live in hypersaline crater lakes, the microbial community is largely made up of Oceanospirillales (52.28%) which are halotolerant or halophilic bacteria. This analysis opens up further avenues to identify candidate symbiotic or co-evolved bacteria playing a role in adaptation to similar diets and life-styles or even have a role in speciation. Future functional and phylosymbiotic analyses might help to address these issues.


Subject(s)
Biological Evolution , Cichlids/microbiology , Ecosystem , Gastrointestinal Tract/microbiology , Animals , Geography , Lakes , Nicaragua , Principal Component Analysis , Species Specificity
6.
Mol Ecol ; 22(11): 2986-3001, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23551333

ABSTRACT

Next-generation sequencing (NGS) techniques are now key tools in the detection of population genomic and gene expression differences in a large array of organisms. However, so far few studies have utilized such data for phylogenetic estimations. Here, we use NGS data obtained from genome-wide restriction site-associated DNA (RAD) (∼66000 SNPs) to estimate the phylogenetic relationships among all 26 species of swordtail and platyfish (genus Xiphophorus) from Central America. Past studies, both sequence and morphology-based, have differed in their inferences of the evolutionary relationships within this genus, particularly at the species-level and among monophyletic groupings. We show that using a large number of markers throughout the genome, we are able to infer the phylogenetic relationships with unparalleled resolution for this genus. The relationships among all three major clades and species within each of them are highly resolved and consistent under maximum likelihood, Bayesian inference and maximum parsimony. However, we also highlight the current cautions with this data type and analyses. This genus exhibits a particularly interesting evolutionary history where at least two species may have arisen through hybridization events. Here, we are able to infer the paternal lineages of these putative hybrid species. Using the RAD-marker-based tree we reconstruct the evolutionary history of the sexually selected sword trait and show that it may have been present in the common ancestor of the genus. Together our results highlight the outstanding capacity that RAD sequencing data has for resolving previously problematic phylogenetic relationships, particularly among relatively closely related species.


Subject(s)
Biological Evolution , Cyprinodontiformes/genetics , Genetic Speciation , Mating Preference, Animal , Animals , Base Sequence , Central America , Cyprinodontiformes/classification , Evolution, Molecular , Genetic Markers , Genetic Variation , High-Throughput Nucleotide Sequencing , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
7.
Mol Ecol ; 22(3): 650-69, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23057963

ABSTRACT

The study of parallel evolution facilitates the discovery of common rules of diversification. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex)-from two Great Lakes and two crater lakes in Nicaragua-to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expression in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underexpressed in the thick-lipped morph across all four lakes. However, other aspects of lips' gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differentially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (δ(13)C and δ(15)N) differ between all sympatric morphs, with the greatest differentiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution.


Subject(s)
Biological Evolution , Cichlids/anatomy & histology , Cichlids/genetics , Transcriptome , Adaptation, Biological/genetics , Animals , Carbon Isotopes/analysis , Nicaragua , Nitrogen Isotopes/analysis , Polymorphism, Single Nucleotide , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL