Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2315043121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968128

ABSTRACT

Only 30% of embryos from in vitro fertilized oocytes successfully implant and develop to term, leading to repeated transfer cycles. To reduce time-to-pregnancy and stress for patients, there is a need for a diagnostic tool to better select embryos and oocytes based on their physiology. The current standard employs brightfield imaging, which provides limited physiological information. Here, we introduce METAPHOR: Metabolic Evaluation through Phasor-based Hyperspectral Imaging and Organelle Recognition. This non-invasive, label-free imaging method combines two-photon illumination and AI to deliver the metabolic profile of embryos and oocytes based on intrinsic autofluorescence signals. We used it to classify i) mouse blastocysts cultured under standard conditions or with depletion of selected metabolites (glucose, pyruvate, lactate); and ii) oocytes from young and old mouse females, or in vitro-aged oocytes. The imaging process was safe for blastocysts and oocytes. The METAPHOR classification of control vs. metabolites-depleted embryos reached an area under the ROC curve (AUC) of 93.7%, compared to 51% achieved for human grading using brightfield imaging. The binary classification of young vs. old/in vitro-aged oocytes and their blastulation prediction using METAPHOR reached an AUC of 96.2% and 82.2%, respectively. Finally, organelle recognition and segmentation based on the flavin adenine dinucleotide signal revealed that quantification of mitochondria size and distribution can be used as a biomarker to classify oocytes and embryos. The performance and safety of the method highlight the accuracy of noninvasive metabolic imaging as a complementary approach to evaluate oocytes and embryos based on their physiology.


Subject(s)
Blastocyst , Oocytes , Animals , Blastocyst/metabolism , Mice , Oocytes/metabolism , Female , Organelles/metabolism , Optical Imaging/methods
2.
Sci Adv ; 10(19): eadi6770, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38718114

ABSTRACT

Tracking stem cell fate transition is crucial for understanding their development and optimizing biomanufacturing. Destructive single-cell methods provide a pseudotemporal landscape of stem cell differentiation but cannot monitor stem cell fate in real time. We established a metabolic optical metric using label-free fluorescence lifetime imaging microscopy (FLIM), feature extraction and machine learning-assisted analysis, for real-time cell fate tracking. From a library of 205 metabolic optical biomarker (MOB) features, we identified 56 associated with hematopoietic stem cell (HSC) differentiation. These features collectively describe HSC fate transition and detect its bifurcate lineage choice. We further derived a MOB score measuring the "metabolic stemness" of single cells and distinguishing their division patterns. This score reveals a distinct role of asymmetric division in rescuing stem cells with compromised metabolic stemness and a unique mechanism of PI3K inhibition in promoting ex vivo HSC maintenance. MOB profiling is a powerful tool for tracking stem cell fate transition and improving their biomanufacturing from a single-cell perspective.


Subject(s)
Biomarkers , Cell Differentiation , Cell Lineage , Hematopoietic Stem Cells , Biomarkers/metabolism , Animals , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Mice , Cell Tracking/methods , Single-Cell Analysis/methods , Microscopy, Fluorescence/methods , Humans
3.
Commun Biol ; 7(1): 364, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531976

ABSTRACT

For generations researchers have been observing the dynamic processes of life through the lens of a microscope. This has offered tremendous insights into biological phenomena that span multiple orders of time- and length-scales ranging from the pure magic of molecular reorganization at the membrane of immune cells, to cell migration and differentiation during development or wound healing. Standard fluorescence microscopy techniques offer glimpses at such processes in vitro, however, when applied in intact systems, they are challenged by reduced signal strengths and signal-to-noise ratios that result from deeper imaging. As a remedy, two-photon excitation (TPE) microscopy takes a special place, because it allows us to investigate processes in vivo, in their natural environment, even in a living animal. Here, we review the fundamental principles underlying TPE aimed at basic and advanced microscopy users interested in adopting TPE for intravital imaging. We focus on applications in neurobiology, present current trends towards faster, wider and deeper imaging, discuss the combination with photon counting technologies for metabolic imaging and spectroscopy, as well as highlight outstanding issues and drawbacks in development and application of these methodologies.


Subject(s)
Intravital Microscopy , Microscopy, Fluorescence, Multiphoton , Animals , Microscopy, Fluorescence, Multiphoton/methods , Microscopy, Fluorescence/methods , Spectrum Analysis , Photons
4.
bioRxiv ; 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38370804

ABSTRACT

Fluorescent biosensors revolutionized biomedical science by enabling the direct measurement of signaling activities in living cells, yet the current technology is limited in resolution and dimensionality. Here, we introduce highly sensitive chemigenetic kinase activity biosensors that combine the genetically encodable self-labeling protein tag HaloTag7 with bright far-red-emitting synthetic fluorophores. This technology enables five-color biosensor multiplexing, 4D activity imaging, and functional super-resolution imaging via stimulated emission depletion (STED) microscopy.

5.
Nature ; 626(7999): 611-616, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297119

ABSTRACT

Precise control of cell division is essential for proper patterning and growth during the development of multicellular organisms. Coordination of formative divisions that generate new tissue patterns with proliferative divisions that promote growth is poorly understood. SHORTROOT (SHR) and SCARECROW (SCR) are transcription factors that are required for formative divisions in the stem cell niche of Arabidopsis roots1,2. Here we show that levels of SHR and SCR early in the cell cycle determine the orientation of the division plane, resulting in either formative or proliferative cell division. We used 4D quantitative, long-term and frequent (every 15 min for up to 48 h) light sheet and confocal microscopy to probe the dynamics of SHR and SCR in tandem within single cells of living roots. Directly controlling their dynamics with an SHR induction system enabled us to challenge an existing bistable model3 of the SHR-SCR gene-regulatory network and to identify key features that are essential for rescue of formative divisions in shr mutants. SHR and SCR kinetics do not align with the expected behaviour of a bistable system, and only low transient levels, present early in the cell cycle, are required for formative divisions. These results reveal an uncharacterized mechanism by which developmental regulators directly coordinate patterning and growth.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Cycle , Plant Roots , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Cycle/genetics , Cell Division/genetics , Gene Expression Regulation, Plant , Plant Roots/cytology , Plant Roots/growth & development , Plant Roots/metabolism , Microscopy, Confocal , Mutation
6.
Dis Model Mech ; 16(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37902188

ABSTRACT

Fluorescent reporter pluripotent stem cell-derived retinal organoids are powerful tools to investigate cell type-specific development and disease phenotypes. When combined with live imaging, they enable direct and repeated observation of cell behaviors within a developing retinal tissue. Here, we generated a human cone photoreceptor reporter line by CRISPR/Cas9 genome editing of WTC11-mTagRFPT-LMNB1 human induced pluripotent stem cells (iPSCs) by inserting enhanced green fluorescent protein (EGFP) coding sequences and a 2A self-cleaving peptide at the N-terminus of guanine nucleotide-binding protein subunit alpha transducin 2 (GNAT2). In retinal organoids generated from these iPSCs, the GNAT2-EGFP alleles robustly and exclusively labeled immature and mature cones. Episodic confocal live imaging of hydrogel immobilized retinal organoids allowed tracking of the morphological maturation of individual cones for >18 weeks and revealed inner segment accumulation of mitochondria and growth at 12.2 µm3 per day from day 126 to day 153. Immobilized GNAT2-EGFP cone reporter organoids provide a valuable tool for investigating human cone development and disease.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Cone Photoreceptor Cells , Humans , Retinal Cone Photoreceptor Cells/metabolism , Retina/metabolism , Organoids , Cell Differentiation
7.
bioRxiv ; 2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37790542

ABSTRACT

Developmental studies have revealed the importance of the transcription factor Hand2 in cardiac development. Hand2 promotes cardiac progenitor differentiation and epithelial maturation, while repressing other tissue types. The mechanisms underlying the promotion of cardiac fates are far better understood than those underlying the repression of alternative fates. Here, we assess Hand2-dependent changes in gene expression and chromatin remodeling in cardiac progenitors of zebrafish embryos. Cell-type specific transcriptome analysis shows a dual function for Hand2 in activation of cardiac differentiation genes and repression of pronephric pathways. We identify functional cis- regulatory elements whose chromatin accessibility are increased in hand2 mutant cells. These regulatory elements associate with non-cardiac gene expression, and drive reporter gene expression in tissues associated with Hand2-repressed genes. We find that functional Hand2 is sufficient to reduce non-cardiac reporter expression in cardiac lineages. Taken together, our data support a model of Hand2-dependent coordination of transcriptional programs, not only through transcriptional activation of cardiac and epithelial maturation genes, but also through repressive chromatin remodeling at the DNA regulatory elements of non-cardiac genes.

8.
Biomed Opt Express ; 14(8): 4170-4178, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37799700

ABSTRACT

Glucose stimulated insulin secretion is mediated by glucose metabolism via oxidative phosphorylation generating ATP that triggers membrane depolarization and exocytosis of insulin. In stressed beta cells, glucose metabolism is remodeled, with enhanced glycolysis uncoupled from oxidative phosphorylation, resulting in the impaired glucose-mediated insulin secretion characteristic of diabetes. Relative changes in glycolysis and oxidative phosphorylation can be monitored in living cells using the 3-component fitting approach of fluorescence lifetime imaging microscopy (FLIM). We engrafted pancreatic islets onto the iris to permit in vivo FLIM monitoring of the trajectory of glucose metabolism. The results show increased oxidative phosphorylation of islet cells (∼90% beta cells) in response to hyperglycemia; in contrast red blood cells traversing the islets maintained exclusive glycolysis as expected in the absence of mitochondria.

9.
Bioinformatics ; 39(9)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37699009

ABSTRACT

SUMMARY: In functional imaging studies, accurately synchronizing the time course of experimental manipulations and stimulus presentations with resulting imaging data is crucial for analysis. Current software tools lack such functionality, requiring manual processing of the experimental and imaging data, which is error-prone and potentially non-reproducible. We present VoDEx, an open-source Python library that streamlines the data management and analysis of functional imaging data. VoDEx synchronizes the experimental timeline and events (e.g. presented stimuli, recorded behavior) with imaging data. VoDEx provides tools for logging and storing the timeline annotation, and enables retrieval of imaging data based on specific time-based and manipulation-based experimental conditions. AVAILABILITY AND IMPLEMENTATION: VoDEx is an open-source Python library and can be installed via the "pip install" command. It is released under a BSD license, and its source code is publicly accessible on GitHub (https://github.com/LemonJust/vodex). A graphical interface is available as a napari-vodex plugin, which can be installed through the napari plugins menu or using "pip install." The source code for the napari plugin is available on GitHub (https://github.com/LemonJust/napari-vodex). The software version at the time of submission is archived at Zenodo (version v1.0.18, https://zenodo.org/record/8061531).

10.
ACS Chem Biol ; 18(7): 1523-1533, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37200527

ABSTRACT

Styrene dyes are useful imaging probes and fluorescent sensors due to their strong fluorogenic responses to environmental changes or binding macromolecules. Previously, indole-containing styrene dyes have been reported to selectively bind RNA in the nucleolus and cytoplasm. However, the application of these indole-based dyes in cell imaging is limited by their moderate fluorescence enhancement and quantum yields, as well as relatively high background associated with these green-emitting dyes. In this work, we have investigated the positional and electronic effects of the electron donor by generating regioisomeric and isosteric analogues of the indole ring. Select probes exhibited large Stokes shifts, enhanced molar extinction coefficients, and bathochromic shifts in their absorption and fluorescence wavelengths. In particular, the indolizine analogues displayed high membrane permeability, strong fluorogenic responses upon binding RNA, compatibility with fluorescence lifetime imaging microscopy (FLIM), low cytotoxicity, and excellent photostability. These indolizine dyes not only give rise to rapid, sensitive, and intense staining of nucleoli in live cells but can also resolve subnucleolar structures enabling highly detailed studies of nucleolar morphology. Furthermore, our dyes can partition into RNA coacervates and resolve the formation of multiphase complex coacervate droplets. These indolizine-containing styrene probes offer the highest fluorescence enhancement among the RNA-selective dyes reported in the literature; thus, these new dyes are excellent alternatives to the commercially available RNA dye, SYTO RNASelect, for visualizing RNA in live cells and in vitro.


Subject(s)
Fluorescent Dyes , RNA , Humans , Fluorescent Dyes/chemistry , HeLa Cells , Microscopy, Fluorescence , RNA/chemistry , Styrenes
11.
Cell Rep Methods ; 3(4): 100441, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37159674

ABSTRACT

Hyperspectral fluorescence imaging improves multiplexed observations of biological samples by utilizing multiple color channels across the spectral range to compensate for spectral overlap between labels. Typically, spectral resolution comes at a cost of decreased detection efficiency, which both hampers imaging speed and increases photo-toxicity to the samples. Here, we present a high-speed, high-efficiency snapshot spectral acquisition method, based on optical compression of the fluorescence spectra via Fourier transform, that overcomes the challenges of discrete spectral sampling: single-shot hyperspectral phasor camera (SHy-Cam). SHy-Cam captures fluorescence spatial and spectral information in a single exposure with a standard scientific CMOS camera, with photon efficiency of over 80%, easily and with acquisition rates exceeding 30 datasets per second, making it a powerful tool for multi-color in vivo imaging. Its simple design, using readily available optical components, and its easy integration provide a low-cost solution for multi-color fluorescence imaging with increased efficiency and speed.


Subject(s)
Data Compression , Optical Devices , Hyperspectral Imaging , Microscopy, Fluorescence
12.
ArXiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37214133

ABSTRACT

In functional imaging studies, accurately synchronizing the time course of experimental manipulations and stimulus presentations with resulting imaging data is crucial for analysis. Current software tools lack such functionality, requiring manual processing of the experimental and imaging data, which is error-prone and potentially non-reproducible. We present VoDEx, an open-source Python library that streamlines the data management and analysis of functional imaging data. VoDEx synchronizes the experimental timeline and events (eg. presented stimuli, recorded behavior) with imaging data. VoDEx provides tools for logging and storing the timeline annotation, and enables retrieval of imaging data based on specific time-based and manipulation-based experimental conditions. Availability and Implementation: VoDEx is an open-source Python library and can be installed via the "pip install" command. It is released under a BSD license, and its source code is publicly accessible on GitHub https://github.com/LemonJust/vodex. A graphical interface is available as a napari-vodex plugin, which can be installed through the napari plugins menu or using "pip install." The source code for the napari plugin is available on GitHub https://github.com/LemonJust/napari-vodex.

13.
bioRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909527

ABSTRACT

Fluorescent reporter pluripotent stem cell (PSC) derived retinal organoids are powerful tools to investigate cell type-specific development and disease phenotypes. When combined with live imaging, they enable direct and repeated observation of cell behaviors within a developing retinal tissue. Here, we generated a human cone photoreceptor reporter line by CRISPR/Cas9 genome editing of WTC11-mTagRFPT-LMNB1 human induced pluripotent stem cells (iPSCs) by inserting enhanced green fluorescent protein (EGFP) coding sequences and a 2A self-cleaving peptide at the N-terminus of Guanine Nucleotide-Binding Protein Subunit Alpha Transducin 2 (GNAT2). In retinal organoids generated from these iPSCs, the GNAT2-EGFP allele robustly and exclusively labeled both immature and mature cones starting at culture day 34. Episodic confocal live imaging of hydrogel immobilized retinal organoids allowed tracking of morphological maturation of individual cones for >18 weeks and revealed inner segment accumulation of mitochondria and growth at 12.2 cubic microns per day from day 126 to day 153. Immobilized GNAT2-EGFP cone reporter organoids provide a valuable tool for investigating human cone development and disease.

14.
Nat Methods ; 20(2): 248-258, 2023 02.
Article in English | MEDLINE | ID: mdl-36658278

ABSTRACT

The expansion of fluorescence bioimaging toward more complex systems and geometries requires analytical tools capable of spanning widely varying timescales and length scales, cleanly separating multiple fluorescent labels and distinguishing these labels from background autofluorescence. Here we meet these challenging objectives for multispectral fluorescence microscopy, combining hyperspectral phasors and linear unmixing to create Hybrid Unmixing (HyU). HyU is efficient and robust, capable of quantitative signal separation even at low illumination levels. In dynamic imaging of developing zebrafish embryos and in mouse tissue, HyU was able to cleanly and efficiently unmix multiple fluorescent labels, even in demanding volumetric timelapse imaging settings. HyU permits high dynamic range imaging, allowing simultaneous imaging of bright exogenous labels and dim endogenous labels. This enables coincident studies of tagged components, cellular behaviors and cellular metabolism within the same specimen, providing more accurate insights into the orchestrated complexity of biological systems.


Subject(s)
Zebrafish , Animals , Mice , Microscopy, Fluorescence/methods
15.
Science ; 379(6627): 71-78, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36603098

ABSTRACT

The breaking of bilateral symmetry in most vertebrates is critically dependent upon the motile cilia of the embryonic left-right organizer (LRO), which generate a directional fluid flow; however, it remains unclear how this flow is sensed. Here, we demonstrated that immotile LRO cilia are mechanosensors for shear force using a methodological pipeline that combines optical tweezers, light sheet microscopy, and deep learning to permit in vivo analyses in zebrafish. Mechanical manipulation of immotile LRO cilia activated intraciliary calcium transients that required the cation channel Polycystin-2. Furthermore, mechanical force applied to LRO cilia was sufficient to rescue and reverse cardiac situs in zebrafish that lack motile cilia. Thus, LRO cilia are mechanosensitive cellular levers that convert biomechanical forces into calcium signals to instruct left-right asymmetry.


Subject(s)
Body Patterning , Calcium Signaling , Calcium , Cilia , Zebrafish , Animals , Calcium/metabolism , Cilia/physiology , Zebrafish/growth & development , Zebrafish Proteins/metabolism , TRPP Cation Channels/metabolism
16.
iScience ; 26(1): 105704, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36582821

ABSTRACT

BAZ1B is a ubiquitously expressed nuclear protein with roles in chromatin remodeling, DNA replication and repair, and transcription. Reduced BAZ1B expression disrupts neuronal and neural crest development. Variation in the activity of BAZ1B has been proposed to underly morphological and behavioral aspects of domestication through disruption of neural crest development. Knockdown of baz1b in Xenopus embryos and Baz1b loss-of-function (LoF) in mice leads to craniofacial defects consistent with this hypothesis. We generated baz1b LoF zebrafish using CRISPR/Cas9 gene editing to test the hypothesis that baz1b regulates behavioral phenotypes associated with domestication in addition to craniofacial features. Zebrafish with baz1b LoF show mild underdevelopment at larval stages and distinctive craniofacial features later in life. Mutant zebrafish show reduced anxiety-associated phenotypes and an altered ontogeny of social behaviors. Thus, in zebrafish, developmental deficits in baz1b recapitulate both morphological and behavioral phenotypes associated with the domestication syndrome in other species.

17.
Proc Natl Acad Sci U S A ; 119(49): e2213538119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36454761

ABSTRACT

The sensitivity of the αß T cell receptor (TCR) is enhanced by the coreceptors CD4 and CD8αß, which are expressed primarily by cells of the helper and cytotoxic T cell lineages, respectively. The coreceptors bind to major histocompatibility complex (MHC) molecules and associate intracellularly with the Src-family kinase Lck, which catalyzes TCR phosphorylation during receptor triggering. Although coreceptor/kinase occupancy was initially believed to be high, a recent study suggested that most coreceptors exist in an Lck-free state, and that this low occupancy helps to effect TCR antigen discrimination. Here, using the same method, we found instead that the CD4/Lck interaction was stoichiometric (~100%) and that the CD8αß/Lck interaction was substantial (~60%). We confirmed our findings in live cells using fluorescence cross-correlation spectroscopy (FCCS) to measure coreceptor/Lck codiffusion in situ. After introducing structurally guided mutations into the intracellular domain of CD4, we used FCCS to also show that stoichiometric coupling to Lck required an amphipathic α-helix present in CD4 but not CD8α. In double-positive cells expressing equal numbers of both coreceptors, but limiting amounts of kinase, CD4 outcompeted CD8αß for Lck. In T cells, TCR signaling induced CD4/Lck oligomerization but did not affect the high levels of CD4/Lck occupancy. These findings help settle the question of kinase occupancy and suggest that the binding advantages that CD4 has over CD8 could be important when Lck levels are limiting.


Subject(s)
Major Histocompatibility Complex , T-Lymphocytes, Cytotoxic , Phosphorylation , src-Family Kinases , Lymphocyte Count
18.
PLoS Comput Biol ; 18(10): e1010555, 2022 10.
Article in English | MEDLINE | ID: mdl-36251711

ABSTRACT

Pancreatic ß-cells respond to increased extracellular glucose levels by initiating a metabolic shift. That change in metabolism is part of the process of glucose-stimulated insulin secretion and is of particular interest in the context of diabetes. However, we do not fully understand how the coordinated changes in metabolic pathways and metabolite products influence insulin secretion. In this work, we apply systems biology approaches to develop a detailed kinetic model of the intracellular central carbon metabolic pathways in pancreatic ß-cells upon stimulation with high levels of glucose. The model is calibrated to published metabolomics datasets for the INS1 823/13 cell line, accurately capturing the measured metabolite fold-changes. We first employed the calibrated mechanistic model to estimate the stimulated cell's fluxome. We then used the predicted network fluxes in a data-driven approach to build a partial least squares regression model. By developing the combined kinetic and data-driven modeling framework, we gain insights into the link between ß-cell metabolism and glucose-stimulated insulin secretion. The combined modeling framework was used to predict the effects of common anti-diabetic pharmacological interventions on metabolite levels, flux through the metabolic network, and insulin secretion. Our simulations reveal targets that can be modulated to enhance insulin secretion. The model is a promising tool to contextualize and extend the usefulness of metabolomics data and to predict dynamics and metabolite levels that are difficult to measure in vitro. In addition, the modeling framework can be applied to identify, explain, and assess novel and clinically-relevant interventions that may be particularly valuable in diabetes treatment.


Subject(s)
Carbon , Insulin-Secreting Cells , Insulin Secretion , Carbon/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Glucose/metabolism
19.
Appl Phys Lett ; 121(16): 163701, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36276589

ABSTRACT

Light-sheet microscopes must compromise among field of view, optical sectioning, resolution, and detection efficiency. High-numerical-aperture (NA) detection objective lenses provide higher resolution, but their narrow depth of field inefficiently captures the fluorescence signal generated throughout the thickness of the illumination light sheet when imaging large volumes. Here, we present ExD-SPIM (extended depth-of-field selective-plane illumination microscopy), an improved light-sheet microscopy strategy that solves this limitation by extending the depth of field (DOF) of high-NA detection objectives to match the thickness of the illumination light sheet. This extension of the DOF uses a phase mask to axially stretch the point-spread function of the objective lens while largely preserving lateral resolution. This matching of the detection DOF to the illumination-sheet thickness increases the total fluorescence collection, reduces the background, and improves the overall signal-to-noise ratio (SNR), as shown by numerical simulations, imaging of bead phantoms, and imaging living animals. In comparison to conventional light sheet imaging with low-NA detection that yields equivalent DOF, the results show that ExD-SPIM increases the SNR by more than threefold and dramatically reduces the rate of photobleaching. Compared to conventional high-NA detection, ExD-SPIM improves the signal sensitivity and volumetric coverage of whole-brain activity imaging, increasing the number of detected neurons by over a third.

20.
Front Neuroanat ; 16: 943504, 2022.
Article in English | MEDLINE | ID: mdl-35911657

ABSTRACT

An ability to estimate quantities, such as the number of conspecifics or the size of a predator, has been reported in vertebrates. Fish, in particular zebrafish, may be instrumental in advancing the understanding of magnitude cognition. We review here the behavioral studies that have described the ecological relevance of quantity estimation in fish and the current status of the research aimed at investigating the neurobiological bases of these abilities. By combining behavioral methods with molecular genetics and calcium imaging, the involvement of the retina and the optic tectum has been documented for the estimation of continuous quantities in the larval and adult zebrafish brain, and the contributions of the thalamus and the dorsal-central pallium for discrete magnitude estimation in the adult zebrafish brain. Evidence for basic circuitry can now be complemented and extended to research that make use of transgenic lines to deepen our understanding of quantity cognition at genetic and molecular levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...