Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37631058

ABSTRACT

(1) Background: SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is a promising therapeutic target to fight COVID-19, and many RdRp inhibitors nucleotide/nucleoside analogs, such as remdesivir, have been identified or are in clinical studies. However, the appearance of resistant mutations could reduce their efficacy. In the present work, we structurally evaluated the impact of RdRp mutations found at baseline in 39 patients treated with remdesivir and associated with a different degree of antiviral response in vivo. (2) Methods: A refined bioinformatics approach was applied to assign SARS-CoV-2 clade and lineage, and to define RdRp mutational profiles. In line with such a method, the same mutations were built and analyzed by combining docking and thermodynamics evaluations with both molecular dynamics and representative pharmacophore models. (3) Results: Clinical studies revealed that patients bearing the most prevalent triple mutant P323L+671S+M899I, which was present in 41% of patients, or the more complex mutational profile P323L+G671S+L838I+D738Y+K91E, which was found with a prevalence of 2.6%, showed a delayed reduced response to remdesivir, as confirmed by the increase in SARS-CoV-2 viral load and by a reduced theoretical binding affinity versus RdRp (ΔGbindWT = -122.70 kcal/mol; ΔGbindP323L+671S+M899I = -84.78 kcal/mol; ΔGbindP323L+G671S+L838I+D738Y+K91E = -96.74 kcal/mol). Combined computational approaches helped to rationalize such clinical observations, offering a mechanistic understanding of the allosteric effects of mutants on the global motions of the viral RNA synthesis machine and in the changes of the interactions patterns of remdesivir during its binding.

2.
Emerg Microbes Infect ; 12(1): 2219347, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37288750

ABSTRACT

Specific HBsAg mutations are known to hamper HBsAg recognition by neutralizing antibodies thus challenging HBV-vaccination efficacy. Nevertheless, information on their impact and spreading over time is limited. Here, we characterize the circulation of vaccine-escape mutations from 2005 to 2019 and their correlation with virological parameters in a large cohort of patients infected with HBV genotype-D (N = 947), dominant in Europe. Overall, 17.7% of patients harbours ≥1 vaccine-escape mutation with the highest prevalence in subgenotype-D3. Notably, complex profiles (characterized by ≥2 vaccine-escape mutations) are revealed in 3.1% of patients with a prevalence rising from 0.4% in 2005-2009 to 3.0% in 2010-2014 and 5.1% in 2015-2019 (P = 0.007) (OR[95%CI]:11.04[1.42-85.58], P = 0.02, by multivariable-analysis). The presence of complex profiles correlates with lower HBsAg-levels (median[IQR]:40[0-2905]IU/mL for complex profiles vs 2078[115-6037]IU/ml and 1881[410-7622]IU/mL for single or no vaccine-escape mutation [P < 0.02]). Even more, the presence of complex profiles correlates with HBsAg-negativity despite HBV-DNA positivity (HBsAg-negativity in 34.8% with ≥2 vaccine-escape mutations vs 6.7% and 2.3% with a single or no vaccine-escape mutation, P < 0.007). These in-vivo findings are in keeping with our in-vitro results showing the ability of these mutations in hampering HBsAg secretion or HBsAg recognition by diagnostic antibodies. In conclusion, vaccine-escape mutations, single or in complex profiles, circulate in a not negligible fraction of HBV genotype-D infected patients with an increasing temporal trend, suggesting a progressive enrichment in the circulation of variants able to evade humoral responses. This should be considered for a proper clinical interpretation of HBsAg-results and for the development of novel vaccine formulations for prophylactic and therapeutic purposes.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B virus , Humans , Hepatitis B Surface Antigens/genetics , Hepatitis B Vaccines , Mutation , Vaccination , Genotype , DNA, Viral/genetics
3.
Future Med Chem ; 13(20): 1731-1741, 2021 10.
Article in English | MEDLINE | ID: mdl-34402654

ABSTRACT

Background: The thiazolides, typified by nitazoxanide, are an important class of anti-infective agents. A significant problem with nitazoxanide and its active circulating metabolite tizoxanide is their poor solubility. Results: We report the preparation and evaluation of a series of amine salts of tizoxanide and the corresponding 5-Cl thiazolide. These salts demonstrated improved aqueous solubility and absorption, as shown by physicochemical and in vivo measurements. They combine antiviral activity against influenza A virus with excellent cell safety indices. We also report the x-ray crystal structural data of the ethanolamine salt. Conclusion: The ethanol salt of thiazolide retains the activity of the parent together with an improved cell safety index, making it a good candidate for further evaluation.


Subject(s)
Amines/pharmacology , Antiviral Agents/pharmacology , Influenza A virus/drug effects , Thiazoles/pharmacology , A549 Cells , Amines/chemical synthesis , Amines/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Survival/drug effects , Cells, Cultured , Humans , Microbial Sensitivity Tests , Molecular Structure , Salts/chemical synthesis , Salts/chemistry , Salts/pharmacology , Thiazoles/chemical synthesis , Thiazoles/chemistry
4.
Future Med Chem ; 10(8): 851-862, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29629834

ABSTRACT

AIM: The only small molecule drugs currently available for treatment of influenza A virus (IAV) are M2 ion channel blockers and sialidase inhibitors. The prototype thiazolide, nitazoxanide, has successfully completed Phase III clinical trials against acute uncomplicated influenza. RESULTS: We report the activity of seventeen thiazolide analogs against A/PuertoRico/8/1934(H1N1), a laboratory-adapted strain of the H1N1 subtype of IAV, in a cell culture-based assay. A total of eight analogs showed IC50s in the range of 0.14-5.0 µM. Additionally a quantitative structure-property relationship study showed high correlation between experimental and predicted activity based on a molecular descriptor set. CONCLUSION: A range of thiazolides show useful activity against an H1N1 strain of IAV. Further evaluation of these molecules as potential new small molecule therapies is justified.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Thiazoles/chemistry , Thiazoles/pharmacology , Drug Discovery , Humans , Influenza A virus/drug effects , Influenza, Human/drug therapy , Nitro Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...