Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Science ; 384(6694): 428-437, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662827

ABSTRACT

A role for vitamin D in immune modulation and in cancer has been suggested. In this work, we report that mice with increased availability of vitamin D display greater immune-dependent resistance to transplantable cancers and augmented responses to checkpoint blockade immunotherapies. Similarly, in humans, vitamin D-induced genes correlate with improved responses to immune checkpoint inhibitor treatment as well as with immunity to cancer and increased overall survival. In mice, resistance is attributable to the activity of vitamin D on intestinal epithelial cells, which alters microbiome composition in favor of Bacteroides fragilis, which positively regulates cancer immunity. Our findings indicate a previously unappreciated connection between vitamin D, microbial commensal communities, and immune responses to cancer. Collectively, they highlight vitamin D levels as a potential determinant of cancer immunity and immunotherapy success.


Subject(s)
Bacteroides fragilis , Gastrointestinal Microbiome , Immune Checkpoint Inhibitors , Neoplasms , Vitamin D , Animals , Female , Humans , Male , Mice , Bacteroides fragilis/metabolism , Gastrointestinal Microbiome/drug effects , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/microbiology , Neoplasms/therapy , Vitamin D/administration & dosage , Vitamin D/metabolism , Diet , Cell Line, Tumor , Calcifediol/administration & dosage , Calcifediol/metabolism , Vitamin D-Binding Protein/genetics , Vitamin D-Binding Protein/metabolism
2.
Cell Rep ; 42(12): 113506, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38019655

ABSTRACT

Cross-presentation of dead cell-associated antigens by conventional dendritic cells type 1 (cDC1s) is critical for CD8+ T cells response against many tumors and viral infections. It is facilitated by DNGR-1 (CLEC9A), an SYK-coupled cDC1 receptor that detects dead cell debris. Here, we report that DNGR-1 engagement leads to rapid activation of CBL and CBL-B E3 ligases to cause K63-linked ubiquitination of SYK and terminate signaling. Genetic deletion of CBL E3 ligases or charge-conserved mutation of target lysines within SYK abolishes SYK ubiquitination and results in enhanced DNGR-1-dependent antigen cross-presentation. We also find that cDC1 deficient in CBL E3 ligases are more efficient at cross-priming CD8+ T cells to dead cell-associated antigens and promoting host resistance to tumors. Our findings reveal a role for CBL-dependent ubiquitination in limiting cross-presentation of dead cell-associated antigens and highlight an axis of negative regulation of cDC1 activity that could be exploited to increase anti-tumor immunity.


Subject(s)
Cross-Priming , Ubiquitin-Protein Ligases , CD8-Positive T-Lymphocytes , Proto-Oncogene Proteins c-cbl , Ubiquitination , Dendritic Cells , Syk Kinase
3.
Nature ; 621(7980): 813-820, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37587341

ABSTRACT

Disruption of the lung endothelial-epithelial cell barrier following respiratory virus infection causes cell and fluid accumulation in the air spaces and compromises vital gas exchange function1. Endothelial dysfunction can exacerbate tissue damage2,3, yet it is unclear whether the lung endothelium promotes host resistance against viral pathogens. Here we show that the environmental sensor aryl hydrocarbon receptor (AHR) is highly active in lung endothelial cells and protects against influenza-induced lung vascular leakage. Loss of AHR in endothelia exacerbates lung damage and promotes the infiltration of red blood cells and leukocytes into alveolar air spaces. Moreover, barrier protection is compromised and host susceptibility to secondary bacterial infections is increased when endothelial AHR is missing. AHR engages tissue-protective transcriptional networks in endothelia, including the vasoactive apelin-APJ peptide system4, to prevent a dysplastic and apoptotic response in airway epithelial cells. Finally, we show that protective AHR signalling in lung endothelial cells is dampened by the infection itself. Maintenance of protective AHR function requires a diet enriched in naturally occurring AHR ligands, which activate disease tolerance pathways in lung endothelia to prevent tissue damage. Our findings demonstrate the importance of endothelial function in lung barrier immunity. We identify a gut-lung axis that affects lung damage following encounters with viral pathogens, linking dietary composition and intake to host fitness and inter-individual variations in disease outcome.


Subject(s)
Endothelial Cells , Lung , Orthomyxoviridae Infections , Receptors, Aryl Hydrocarbon , Animals , Humans , Mice , Apelin/metabolism , Diet , Endothelial Cells/metabolism , Endothelium/cytology , Endothelium/metabolism , Epithelial Cells/metabolism , Erythrocytes/metabolism , Influenza, Human/immunology , Influenza, Human/metabolism , Intestines/metabolism , Leukocytes/metabolism , Ligands , Lung/immunology , Lung/metabolism , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Pulmonary Alveoli/immunology , Pulmonary Alveoli/metabolism , Receptors, Aryl Hydrocarbon/metabolism
4.
Dev Cell ; 57(16): 1957-1975.e9, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35998585

ABSTRACT

Cells with latent stem ability can contribute to mammalian tissue regeneration after damage. Whether the central nervous system (CNS) harbors such cells remains controversial. Here, we report that DNGR-1 lineage tracing in mice identifies an ependymal cell subset, wherein resides latent regenerative potential. We demonstrate that DNGR-1-lineage-traced ependymal cells arise early in embryogenesis (E11.5) and subsequently spread across the lining of cerebrospinal fluid (CSF)-filled compartments to form a contiguous sheet from the brain to the end of the spinal cord. In the steady state, these DNGR-1-traced cells are quiescent, committed to their ependymal cell fate, and do not contribute to neuronal or glial lineages. However, trans-differentiation can be induced in adult mice by CNS injury or in vitro by culture with suitable factors. Our findings highlight previously unappreciated ependymal cell heterogeneity and identify across the entire CNS an ependymal cell subset wherein resides damage-responsive neural stem cell potential.


Subject(s)
Neural Stem Cells , Animals , Cell Differentiation , Ependyma , Mammals , Mice , Neuroglia , Spinal Cord
5.
Science ; 373(6551): 231-236, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244417

ABSTRACT

In mammals, early resistance to viruses relies on interferons, which protect differentiated cells but not stem cells from viral replication. Many other organisms rely instead on RNA interference (RNAi) mediated by a specialized Dicer protein that cleaves viral double-stranded RNA. Whether RNAi also contributes to mammalian antiviral immunity remains controversial. We identified an isoform of Dicer, named antiviral Dicer (aviD), that protects tissue stem cells from RNA viruses-including Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-by dicing viral double-stranded RNA to orchestrate antiviral RNAi. Our work sheds light on the molecular regulation of antiviral RNAi in mammalian innate immunity, in which different cell-intrinsic antiviral pathways can be tailored to the differentiation status of cells.


Subject(s)
DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , RNA Interference , RNA Viruses/physiology , RNA, Viral/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Stem Cells/enzymology , Stem Cells/virology , Alternative Splicing , Animals , Brain/enzymology , Brain/virology , Cell Line , DEAD-box RNA Helicases/chemistry , Humans , Immunity, Innate , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Organoids/enzymology , Organoids/virology , RNA Virus Infections/enzymology , RNA Virus Infections/immunology , RNA Virus Infections/virology , RNA Viruses/genetics , RNA Viruses/immunology , RNA, Double-Stranded/metabolism , RNA, Small Interfering/metabolism , Ribonuclease III/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Virus Replication , Zika Virus/genetics , Zika Virus/immunology , Zika Virus/physiology , Zika Virus Infection/enzymology , Zika Virus Infection/immunology , Zika Virus Infection/virology
6.
Wellcome Open Res ; 6: 9, 2021.
Article in English | MEDLINE | ID: mdl-34095506

ABSTRACT

The ongoing pandemic of SARS-CoV-2 calls for rapid and cost-effective methods to accurately identify infected individuals. The vast majority of patient samples is assessed for viral RNA presence by RT-qPCR. Our biomedical research institute, in collaboration between partner hospitals and an accredited clinical diagnostic laboratory, established a diagnostic testing pipeline that has reported on more than 252,000 RT-qPCR results since its commencement at the beginning of April 2020. However, due to ongoing demand and competition for critical resources, alternative testing strategies were sought. In this work, we present a clinically-validated procedure for high-throughput SARS-CoV-2 detection by RT-LAMP in 25 minutes that is robust, reliable, repeatable, sensitive, specific, and inexpensive.

7.
Sci Immunol ; 4(33)2019 03 01.
Article in English | MEDLINE | ID: mdl-30824528

ABSTRACT

Conventional dendritic cells (cDCs) are found in all tissues and play a key role in immune surveillance. They comprise two major subsets, cDC1 and cDC2, both derived from circulating precursors of cDCs (pre-cDCs), which exited the bone marrow. We show that, in the steady-state mouse, pre-cDCs entering tissues proliferate to give rise to differentiated cDCs, which themselves have residual proliferative capacity. We use multicolor fate mapping of cDC progenitors to show that this results in clones of sister cDCs, most of which comprise a single cDC1 or cDC2 subtype, suggestive of pre-cDC commitment. Upon infection, a surge in the influx of pre-cDCs into the affected tissue dilutes clones and increases cDC numbers. Our results indicate that tissue cDCs can be organized in a patchwork of closely positioned sister cells of the same subset whose coexistence is perturbed by local infection, when the bone marrow provides additional pre-cDCs to meet increased tissue demand.


Subject(s)
Dendritic Cells/immunology , Influenza A virus , Orthomyxoviridae Infections/immunology , Animals , Cell Differentiation , Humans , Influenza, Human/genetics , Influenza, Human/immunology , Lung/immunology , Lymph Nodes/immunology , Mice, Inbred C57BL , Mice, Transgenic , Spleen/immunology , Stem Cells/immunology
8.
Anim Reprod ; 16(4): 902-913, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-32368270

ABSTRACT

The Saanen goat breed has been widely explored in breeding programmes; however, there are few reports about the breed's genetic and molecular composition. Thus, this study aimed to characterize the proteomic profile of spermatozoa from Saanen breeding goats. Five breeding animals with proven fertility were selected, the spermatozoa were collected, and the protein was extracted. Subsequently, the proteins were separated and analysed by two-dimensional electrophoresis and mass spectrometry; the proteins were then identified with the SwissProt database. A total of 31 proteins involved in reproduction were identified, including binding proteins on spermatozoa for fusion with the egg, acrosomal membrane proteins, metabolic enzymes, heat shock proteins, cytoskeletal proteins and spermatozoa motility proteins. The characterization of such proteins clarifies the molecular mechanisms of spermatogenesis and the modifications that ensure the success of fertilization.

9.
Biochem J ; 476(1): 101-113, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30563945

ABSTRACT

Frutalin (FTL) is a multiple-binding lectin belonging to the jacalin-related lectin (JRL) family and derived from Artocarpus incisa (breadfruit) seeds. This lectin specifically recognizes and binds α-d-galactose. FTL has been successfully used in immunobiological research for the recognition of cancer-associated oligosaccharides. However, the molecular bases by which FTL promotes these specific activities remain poorly understood. Here, we report the whole 3D structure of FTL for the first time, as determined by X-ray crystallography. The obtained crystals diffracted to 1.81 Å (Apo-frutalin) and 1.65 Å (frutalin-d-Gal complex) of resolution. The lectin exhibits post-translational cleavage yielding an α- (133 amino acids) and ß-chain (20 amino acids), presenting a homotetramer when in solution, with a typical JRL ß-prism. The ß-prism was composed of three 4-stranded ß-sheets forming three antiparallel Greek key motifs. The carbohydrate-binding site (CBS) involved the N-terminus of the α-chain and was formed by four key residues: Gly25, Tyr146, Trp147 and Asp149. Together, these results were used in molecular dynamics simulations in aqueous solutions to shed light on the molecular basis of FTL-ligand binding. The simulations suggest that Thr-Ser-Ser-Asn (TSSN) peptide excision reduces the rigidity of the FTL CBS, increasing the number of interactions with ligands and resulting in multiple-binding sites and anomeric recognition of α-d-galactose sugar moieties. Our findings provide a new perspective to further elucidate the versatility of FTL in many biological activities.


Subject(s)
Artocarpus/chemistry , Galactose/chemistry , Galectins/chemistry , Seeds/chemistry , Binding Sites , Structure-Activity Relationship , Substrate Specificity
10.
Microb Pathog ; 117: 32-42, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29229505

ABSTRACT

The increased incidence of candidemia in terciary hospitals worldwide and the cross-resistance frequency require the new therapeutic strategies development. Recently, our research group demonstrated three semi-synthetic naphthofuranquinones (NFQs) with a significant antifungal activity in a fluconazole-resistant (FLC) C. tropicalis strain. The current study aimed to investigate the action's preliminary mechanisms of NFQs by several standardized methods such as proteomic and flow cytometry analyzes, comet assay, immunohistochemistry and confocal microscopy evaluation. Our data showed C. tropicalis 24 h treated with all NFQs induced an expression's increase of proteins involved in the metabolic response to stress, energy metabolism, glycolysis, nucleosome assembly and translation process. Some aspects of proteomic analysis are in consonance with our flow cytometry analysis which indicated an augmentation of intracellular ROS, mitochondrial dysfunction and DNA strand breaks (neutral comet assay and γ-H2AX detection). In conclusion, our data highlights the great contribution of ROS as a key event, probably not the one, associated to anti-candida properties of studied NFQs.


Subject(s)
Antifungal Agents/pharmacology , Candida tropicalis/drug effects , Candida tropicalis/metabolism , Drug Resistance, Fungal/drug effects , Drug Resistance, Fungal/physiology , Naphthoquinones/pharmacology , Proteomics , Reactive Oxygen Species/metabolism , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Candida tropicalis/genetics , Candidemia/microbiology , Cell Cycle/drug effects , DNA Damage/drug effects , DNA, Fungal/genetics , Energy Metabolism/drug effects , Fluconazole/pharmacology , Glycolysis/drug effects , Membrane Potential, Mitochondrial/drug effects , Microbial Sensitivity Tests , Mitochondria/drug effects , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Stress, Psychological
11.
Trop Anim Health Prod ; 50(1): 43-48, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29022241

ABSTRACT

The caprine arthrite encephalite (CAE) is a disease that affects especially dairy goat. The virus shows compartmentalization features, that allows it to hide at certain times during the course of the disease, making it difficult to control. The present study was conducted to identify the major seminal plasma protein profile of goats infected by CAE and its associations with seroconversion using Western blotting. Two groups containing five males each, were used in this experiment. The first group was composed by seropositive animals and the control by seronegative confirmed by Western blotting and PCR. The semen was collected through artificial vagina and after that, two-dimensional electrophoresis and MALDI-TOF MS were used. Seventy-five spots were identified in the goat seminal plasma gels, equivalent to 13 different proteins with more expression. The similar proteins found in both groups and related to reproduction were spermadhesin Z13-like, bodhesin and bodhesin-2, Lipocalin, protein PDC-109-like, and albumin. In infected goats, proteases such as arisulfatase A have been identified, whose function probably is related to metabolism control of sulfatides, involved to virus control. The other ones were bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase, cathepsin F isoform X1, disintegrin and metalloproteinase domain-containing protein 2-like isoform X1, clusterin, carbonic anhydrase 2, electron transfer flavoprotein subunit beta, and epididymal secretory glutathione peroxidase. The results of this study show the reaction of the innate immune system against chronic infection of goats by CAE.


Subject(s)
Arthritis-Encephalitis Virus, Caprine/isolation & purification , Goat Diseases/diagnosis , Lentivirus Infections/veterinary , Seminal Plasma Proteins/analysis , Animals , Blotting, Western/veterinary , Electrophoresis, Gel, Two-Dimensional/veterinary , Goat Diseases/virology , Goats/genetics , Lentivirus Infections/diagnosis , Lentivirus Infections/virology , Male , Polymerase Chain Reaction/veterinary , Semen/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/veterinary
12.
Science ; 355(6325): 641-647, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28183981

ABSTRACT

Autophagy is important in a variety of cellular and pathophysiological situations; however, its role in immune responses remains elusive. Here, we show that among B cells, germinal center (GC) cells exhibited the highest rate of autophagy during viral infection. In contrast to mechanistic target of rapamycin complex 1-dependent canonical autophagy, GC B cell autophagy occurred predominantly through a noncanonical pathway. B cell stimulation was sufficient to down-regulate canonical autophagy transiently while triggering noncanonical autophagy. Genetic ablation of WD repeat domain, phosphoinositide-interacting protein 2 in B cells alone enhanced this noncanonical autophagy, resulting in changes of mitochondrial homeostasis and alterations in GC and antibody-secreting cells. Thus, B cell activation prompts a temporal switch from canonical to noncanonical autophagy that is important in controlling B cell differentiation and fate.


Subject(s)
Autophagy/immunology , B-Lymphocytes/immunology , B-Lymphocytes/virology , Virus Diseases/immunology , Animals , Down-Regulation , Germinal Center/immunology , Germinal Center/virology , Lymphocyte Activation , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , WD40 Repeats/genetics
13.
Front Oncol ; 7: 14, 2017.
Article in English | MEDLINE | ID: mdl-28210565

ABSTRACT

Breast cancer is one of the most commonly diagnosed types of cancer among women. Breast cancer mortality rates remain high probably because its diagnosis is hampered by inaccurate detection methods. Since changes in protein expression as well as modifications in protein glycosylation have been frequently reported in cancer development, the aim of this work was to study the differential expression as well as modifications of glycosylation of proteins from plasma of women with breast cancer at different stages of disease (n = 30) compared to healthy women (n = 10). A proteomics approach was used that depleted albumin and IgG from plasma followed by glycoprotein enrichment using immobilized Moraceae lectin (frutalin)-affinity chromatography and data-independent label-free mass spectrometric analysis. Data are available via ProteomeXchange with identifier PXD003106. As result, 57,016 peptides and 4,175 proteins among all samples were identified. From this, 40 proteins present in unbound (PI-proteins that did not interact with lectin) and bound (PII-proteins that interacted with lectin) fractions were differentially expressed. High levels of apolipoprotein A-II were detected here that were elevated significantly in the early and advanced stages of the disease. Apolipoprotein C-III was detected in both fractions, and its level was increased slightly in the PI fraction of patients with early-stage breast cancer and expressed at higher levels in the PII fraction of patients with early and intermediate stages. Clusterin was present at higher levels in both fractions of patients with early and intermediate stages of breast cancer. Our findings reveal a correlation between alterations in protein glycosylation, lipid metabolism, and the progression of breast cancer.

14.
Biomark Res ; 4: 1, 2016.
Article in English | MEDLINE | ID: mdl-26823978

ABSTRACT

BACKGROUND: Acute lymphoblastic leukemia is the most common malignant cancer in childhood. The signs and symptoms of childhood cancer are difficult to recognize, as it is not the first diagnosis to be considered for nonspecific complaints, leading to potential uncertainty in diagnosis. The aim of this study was to perform proteomic analysis of serum from pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL) to identify candidate biomarker proteins, for use in early diagnosis and evaluation of treatment. METHODS: Serum samples were obtained from ten patients at the time of diagnosis (B-ALL group) and after induction therapy (AIT group). Sera from healthy children were used as controls (Control group). The samples were subjected to immunodepletion, affinity chromatography with α-d-galactose-binding lectin (from Artocarpus incisa seeds) immobilized on a Sepharose(TM) 4B gel, concentration, and digestion for subsequent analysis with nano-UPLC tandem nano-ESI-MS(E). The program Expression (E) was used to quantify differences in protein expression between groups. RESULTS: A total of 96 proteins were identified. Leucine-rich alpha-2-glycoprotein 1 (LRG1), Clusterin (CLU), thrombin (F2), heparin cofactor II (SERPIND1), alpha-2-macroglobulin (A2M), alpha-2-antiplasmin (SERPINF2), Alpha-1 antitrypsin (SERPINA1), Complement factor B (CFB) and Complement C3 (C3) were identified as candidate biomarkers for early diagnosis of B-ALL, as they were upregulated in the B-ALL group relative to the control and AIT groups. Expression levels of the candidate biomarkers did not differ significantly between the AIT and control groups, providing further evidence that the candidate biomarkers are present only in the disease state, as all patients achieved complete remission after treatment. CONCLUSION: A panel of protein biomarker candidates has been developed for pre-diagnosis of B-ALL and also provided information that would indicate a favorable response to treatment after induction therapy.

15.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 10): 1282-5, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26457519

ABSTRACT

Frutalin is an α-D-galactose-specific carbohydrate-binding glycoprotein with antitumour properties and is a powerful tool for tumour biomarker discovery. The crystallization and preliminary X-ray diffraction analysis of this lectin, which was isolated from Artocarpus incisa seeds, are reported here. Frutalin was purified and submitted to mass-spectrometric analysis. Diverse masses at approximately 16 kDa were observed in the deconvoluted spectra, which support the presence of isoforms. The best frutalin crystals were grown within a week in 0.1 M citric acid pH 3.5 which contained 25% PEG 3350 as a precipitant at 293 K, and diffracted to a maximum resolution of 1.81 Å. The monoclinic crystals belonged to space group I2, with unit-cell parameters a = 76.17, b = 74.56, c = 118.98 Å, ß = 96.56°. A molecular-replacement solution was obtained which indicated the presence of four monomers per asymmetric unit. Crystallographic refinement of the structure is in progress.


Subject(s)
Artocarpus/chemistry , Galactose/metabolism , Galectins/chemistry , Lectins/chemistry , Seeds/chemistry , Crystallization , Hydrogen-Ion Concentration , Mass Spectrometry , X-Ray Diffraction
16.
Immunity ; 43(4): 660-73, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26453379

ABSTRACT

Humans with Wiskott-Aldrich syndrome display a progressive immunological disorder associated with compromised Wiskott-Aldrich Syndrome Interacting Protein (WIP) function. Mice deficient in WIP recapitulate such an immunodeficiency that has been attributed to T cell dysfunction; however, any contribution of B cells is as yet undefined. Here we have shown that WIP deficiency resulted in defects in B cell homing, chemotaxis, survival, and differentiation, ultimately leading to diminished germinal center formation and antibody production. Furthermore, in the absence of WIP, several receptors, namely the BCR, BAFFR, CXCR4, CXCR5, CD40, and TLR4, were impaired in promoting CD19 co-receptor activation and subsequent PI3 kinase (PI3K) signaling. The underlying mechanism was due to a distortion in the actin and tetraspanin networks that lead to altered CD19 cell surface dynamics. In conclusion, our findings suggest that, by regulating the cortical actin cytoskeleton, WIP influences the function of CD19 as a general hub for PI3K signaling.


Subject(s)
Antigens, CD19/physiology , B-Lymphocytes/immunology , Carrier Proteins/physiology , Phosphatidylinositol 3-Kinases/physiology , Signal Transduction/immunology , Actin Cytoskeleton/ultrastructure , Actins/analysis , Animals , Antibody Formation , B-Lymphocytes/drug effects , B-Lymphocytes/enzymology , B-Lymphocytes/ultrastructure , Carrier Proteins/genetics , Cells, Cultured , Chemokines/pharmacology , Chemokines/physiology , Chemotaxis/drug effects , Cytoskeletal Proteins , Germinal Center/immunology , Germinal Center/pathology , Haptens , Hemocyanins/pharmacology , Lymphocyte Activation/drug effects , Lymphopoiesis , Membrane Proteins/immunology , Mice , Phosphorylation , Plasma Cells/immunology , Protein Processing, Post-Translational , Radiation Chimera , Receptors, Antigen, B-Cell/immunology , Receptors, Chemokine/physiology , Tetraspanins/analysis , Vaccinia/immunology , Vaccinia/pathology
17.
Curr Opin Virol ; 15: 34-40, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26246389

ABSTRACT

The oncogenicity of gamma-herpesviruses (γHVs) motivates efforts to control them and their persistence makes early events key targets for intervention. Human γHVs are often assumed to enter naive hosts orally and infect B cells directly. However, neither assumption is supported by direct evidence, and vaccination with the Epstein-Barr virus (EBV) gp350, to block virion binding to B cells, failed to reduce infection rates. Thus, there is a need to re-evaluate assumptions about γHV host entry. Given the difficulty of analysing early human infections, potentially much can be learned from animal models. Genomic comparisons argue that γHVs colonized mammals long before humans speciation, and so that human γHVs are unlikely to differ dramatically in behaviour from those of other mammals. Murid Herpesvirus-4 (MuHV-4), which like EBV and the Kaposi's Sarcoma-associated Herpesvirus (KSHV) persists in memory B cells, enters new hosts via olfactory neurons and exploits myeloid cells to spread. Integrating these data with existing knowledge of human and veterinary γHVs suggests a new model of host entry, with potentially important implications for infection control.


Subject(s)
Gammaherpesvirinae/physiology , Herpesviridae Infections/virology , Virus Internalization , Viruses/pathogenicity , Animals , B-Lymphocytes/immunology , B-Lymphocytes/virology , Herpesviridae Infections/immunology , Herpesviridae Infections/transmission , Host-Parasite Interactions , Humans , Myeloid Cells/virology , Olfactory Mucosa/virology
18.
J Gen Virol ; 96(9): 2788-2793, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25986632

ABSTRACT

Lymphocytes provide gammaherpesviruses with a self-renewing substrate for persistent infection and with transport to mucosal sites for host exit. Their role in the initial colonization of new hosts is less clear. Murid herpesvirus 4 (MuHV-4), an experimentally accessible, B-cell-tropic rhadinovirus (gamma-2 herpesvirus), persistently infects both immunocompetent and B-cell-deficient mice. A lack of B-cells did not compromise MuHV-4 entry into lymphoid tissue, which involved myeloid cell infection. However, it impaired infection amplification and MuHV-4 exit from lymphoid tissue, which involved myeloid to B-cell transfer.


Subject(s)
B-Lymphocytes/virology , Herpesviridae Infections/veterinary , Lymphoid Tissue/virology , Rhadinovirus/physiology , Rodent Diseases/virology , Animals , Herpesviridae Infections/virology , Mice , Mice, Inbred C57BL , Rhadinovirus/genetics , Viral Tropism
19.
J Gen Virol ; 96(8): 2314-2327, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25872742

ABSTRACT

Lymphocyte proliferation, mobility and longevity make them prime targets for virus infection. Myeloid cells that process and present environmental antigens to lymphocytes are consequently an important line of defence. Subcapsular sinus macrophages (SSMs) filter the afferent lymph and communicate with B-cells. How they interact with B-cell-tropic viruses is unknown. We analysed their encounter with murid herpesvirus-4 (MuHV-4), an experimentally accessible gammaherpesvirus related to Kaposi's sarcoma-associated herpesvirus. MuHV-4 disseminated via lymph nodes, and intranasally or subcutaneously inoculated virions readily infected SSMs. However, this infection was poorly productive. SSM depletion with clodronate-loaded liposomes or with diphtheria toxin in CD169-diphtheria toxin receptor transgenic mice increased B-cell infection and hastened virus spread to the spleen. Dendritic cells provided the main route to B-cells, and SSMs slowed host colonization, apparently by absorbing virions non-productively from the afferent lymph.


Subject(s)
Herpesviridae Infections/virology , Macrophages/virology , Rhadinovirus/physiology , Animals , Herpesviridae Infections/immunology , Humans , Lymph Nodes/virology , Macrophages/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Rhadinovirus/genetics , Rhadinovirus/immunology
20.
J Virol Methods ; 206: 105-14, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24928692

ABSTRACT

Herpesvirus transmission is sporadic, and infection may be asymptomatic or present only with secondary lesions after dissemination. Consequently host entry remains ill-understood. Experimental infections can be informative, but depend on inoculations that are inherently artificial and so need validation. Mice are a widely used experimental host. Alert mice inhale readily small (5 µl) liquid volumes, and Indian ink, luciferase or radiolabel delivered thus distributed to the nasopharynx and oropharynx. Murid Herpesvirus-4 or Herpes simplex virus type 1 delivered thus infected only the nose, arguing that host entry is nasal rather than oral. Marker or virus delivery to the lung depended on general anesthesia and a large inoculum volume (30 µl), and so needs further validation of physiological relevance. While lungs could be infected at lower doses than the upper respiratory tract, tracking experiments showed that nasal inocula pass mostly into the oropharynx, even when restricted to 1 µl. Thus, the relative inefficiency of experimental upper respiratory tract infection was attributable to limited liquid retention in this site. Nonetheless low volume intranasal delivery to alert mice provides a convenient way to model experimentally an apparently natural mode of herpesvirus host entry.


Subject(s)
Disease Models, Animal , Herpesvirus 1, Human/growth & development , Respiratory System/virology , Rhadinovirus/growth & development , Administration, Intranasal , Animals , Herpesvirus 1, Human/isolation & purification , Mice, Inbred BALB C , Mice, Inbred C57BL , Rhadinovirus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...