Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807788

ABSTRACT

Development in multicellular organisms relies on cell proliferation and specialization. In plants, both these processes critically depend on the spatial organization of cells within a tissue. Owing to an absence of significant cellular migration, the relative position of plant cells is virtually made permanent at the moment of division. Therefore, in numerous plant developmental contexts, the (divergent) developmental trajectories of daughter cells are dependent on division plane positioning in the parental cell. Prior to and throughout division, specific cellular processes inform, establish and execute division plane control. For studying these facets of division plane control, the moss Physcomitrium (Physcomitrella) patens has emerged as a suitable model system. Developmental progression in this organism starts out simple and transitions towards a body plan with a three-dimensional structure. The transition is accompanied by a series of divisions where cell fate transitions and division plane positioning go hand in hand. These divisions are experimentally highly tractable and accessible. In this review, we will highlight recently uncovered mechanisms, including polarity protein complexes and cytoskeletal structures, and transcriptional regulators, that are required for 1D to 3D body plan formation.


Subject(s)
Bryopsida , Cell Division/physiology , Plant Cells/metabolism , Plant Development/physiology , Bryopsida/cytology , Bryopsida/growth & development
2.
Proc Natl Acad Sci U S A ; 117(39): 24557-24566, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32929017

ABSTRACT

The hormone auxin controls many aspects of the plant life cycle by regulating the expression of thousands of genes. The transcriptional output of the nuclear auxin signaling pathway is determined by the activity of AUXIN RESPONSE transcription FACTORs (ARFs), through their binding to cis-regulatory elements in auxin-responsive genes. Crystal structures, in vitro, and heterologous studies have fueled a model in which ARF dimers bind with high affinity to distinctly spaced repeats of canonical AuxRE motifs. However, the relevance of this "caliper" model, and the mechanisms underlying the binding affinities in vivo, have remained elusive. Here we biochemically and functionally interrogate modes of ARF-DNA interaction. We show that a single additional hydrogen bond in Arabidopsis ARF1 confers high-affinity binding to individual DNA sites. We demonstrate the importance of AuxRE cooperativity within repeats in the Arabidopsis TMO5 and IAA11 promoters in vivo. Meta-analysis of transcriptomes further reveals strong genome-wide association of auxin response with both inverted (IR) and direct (DR) AuxRE repeats, which we experimentally validated. The association of these elements with auxin-induced up-regulation (DR and IR) or down-regulation (IR) was correlated with differential binding affinities of A-class and B-class ARFs, respectively, suggesting a mechanistic basis for the distinct activity of these repeats. Our results support the relevance of high-affinity binding of ARF transcription factors to uniquely spaced DNA elements in vivo, and suggest that differential binding affinities of ARF subfamilies underlie diversity in cis-element function.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Response Elements , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA-Binding Proteins/genetics , Genome-Wide Association Study , Indoleacetic Acids/metabolism , Inverted Repeat Sequences , Multigene Family , Repetitive Sequences, Nucleic Acid , Transcription Factors/genetics
4.
Genes Dev ; 30(20): 2286-2296, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27898393

ABSTRACT

Tissue patterning in multicellular organisms is the output of precise spatio-temporal regulation of gene expression coupled with changes in hormone dynamics. In plants, the hormone auxin regulates growth and development at every stage of a plant's life cycle. Auxin signaling occurs through binding of the auxin molecule to a TIR1/AFB F-box ubiquitin ligase, allowing interaction with Aux/IAA transcriptional repressor proteins. These are subsequently ubiquitinated and degraded via the 26S proteasome, leading to derepression of auxin response factors (ARFs). How auxin is able to elicit such a diverse range of developmental responses through a single signaling module has not yet been resolved. Here we present an alternative auxin-sensing mechanism in which the ARF ARF3/ETTIN controls gene expression through interactions with process-specific transcription factors. This noncanonical hormone-sensing mechanism exhibits strong preference for the naturally occurring auxin indole 3-acetic acid (IAA) and is important for coordinating growth and patterning in diverse developmental contexts such as gynoecium morphogenesis, lateral root emergence, ovule development, and primary branch formation. Disrupting this IAA-sensing ability induces morphological aberrations with consequences for plant fitness. Therefore, our findings introduce a novel transcription factor-based mechanism of hormone perception in plants.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/genetics , Gene Expression Regulation, Plant/genetics , Indoleacetic Acids/metabolism , Morphogenesis/genetics , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , F-Box Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/metabolism , Transcription Factors/metabolism
5.
Cell ; 156(3): 577-89, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24485461

ABSTRACT

Auxin regulates numerous plant developmental processes by controlling gene expression via a family of functionally distinct DNA-binding auxin response factors (ARFs), yet the mechanistic basis for generating specificity in auxin response is unknown. Here, we address this question by solving high-resolution crystal structures of the pivotal Arabidopsis developmental regulator ARF5/MONOPTEROS (MP), its divergent paralog ARF1, and a complex of ARF1 and a generic auxin response DNA element (AuxRE). We show that ARF DNA-binding domains also homodimerize to generate cooperative DNA binding, which is critical for in vivo ARF5/MP function. Strikingly, DNA-contacting residues are conserved between ARFs, and we discover that monomers have the same intrinsic specificity. ARF1 and ARF5 homodimers, however, differ in spacing tolerated between binding sites. Our data identify the DNA-binding domain as an ARF dimerization domain, suggest that ARF dimers bind complex sites as molecular calipers with ARF-specific spacing preference, and provide an atomic-scale mechanistic model for specificity in auxin response.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA/metabolism , Indoleacetic Acids/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Amino Acid Sequence , Crystallography, X-Ray , DNA/chemistry , Dimerization , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary , Sequence Alignment
6.
Dev Cell ; 22(1): 211-22, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22264733

ABSTRACT

The cell types of the plant root are first specified early during embryogenesis and are maintained throughout plant life. Auxin plays an essential role in embryonic root initiation, in part through the action of the ARF5/MP transcription factor and its auxin-labile inhibitor IAA12/BDL. MP and BDL function in embryonic cells but promote auxin transport to adjacent extraembryonic suspensor cells, including the quiescent center precursor (hypophysis). Here we show that a cell-autonomous auxin response within this cell is required for root meristem initiation. ARF9 and redundant ARFs, and their inhibitor IAA10, act in suspensor cells to mediate hypophysis specification and, surprisingly, also to prevent transformation to embryo identity. ARF misexpression, and analysis of the short suspensor mutant, demonstrates that lineage-specific expression of these ARFs is required for normal embryo development. These results imply the existence of a prepattern for a cell-type-specific auxin response that underlies the auxin-dependent specification of embryonic cell types.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/embryology , Arabidopsis/metabolism , Cell Lineage , Indoleacetic Acids/pharmacology , Plant Roots/embryology , Seeds/growth & development , ADP-Ribosylation Factor 1/metabolism , Arabidopsis/drug effects , Fluorescence Resonance Energy Transfer , Gene Expression Regulation, Plant , Genes, Plant , In Situ Hybridization , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plant Roots/metabolism , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Seeds/drug effects , Seeds/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...