Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Clin Immunol ; 44(4): 94, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578569

ABSTRACT

PURPOSE: Deficiency of stromal interaction molecule 1 (STIM1) results in combined immunodeficiency accompanied by extra-immunological findings like enamel defects and myopathy. We here studied a patient with a STIM1 loss-of-function mutation who presented with severe lymphoproliferation. We sought to explore the efficacy of the mTOR inhibitor rapamycin in controlling disease manifestations and reversing aberrant T-cell subsets and functions, which has never been used previously in this disorder. METHODS: Clinical findings of the patient were collected over time. We performed immunological evaluations before and after initiation of rapamycin treatment, including detailed lymphocyte subset analyses, alterations in frequencies of circulating T follicular helper (cTFH) and regulatory T (Treg) cells and their subtypes as well as T cell activation and proliferation capacities. RESULTS: A novel homozygous exon 2 deletion in STIM1 was detected in a 3-year-old girl with severe lymphoproliferation, recurrent infections, myopathy, iris hypoplasia, and enamel hypoplasia. Lymphoproliferation was associated with severe T-cell infiltrates. The deletion resulted in a complete loss of protein expression, associated with a lack of store-operated calcium entry response, defective T-cell activation, proliferation, and cytokine production. Interestingly, patient blood contained fewer cTFH and increased circulating follicular regulatory (cTFR) cells. Abnormal skewing towards TH2-like responses in certain T-cell subpopulations like cTFH, non-cTFH memory T-helper, and Treg cells was associated with increased eosinophil numbers and serum IgE levels. Treatment with rapamycin controlled lymphoproliferation, improved T-cell activation and proliferation capacities, reversed T-cell responses, and repressed high IgE levels and eosinophilia. CONCLUSIONS: This study enhances our understanding of STIM1 deficiency by uncovering additional abnormal T-cell responses, and reveals for the first time the potential therapeutic utility of rapamycin for this disorder.


Subject(s)
Muscular Diseases , Sirolimus , Female , Humans , Child, Preschool , Stromal Interaction Molecule 1/genetics , T-Lymphocyte Subsets , Immunoglobulin E , Neoplasm Proteins
2.
J Clin Immunol ; 44(5): 108, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676845

ABSTRACT

The monogenic causes of very-early-onset inflammatory bowel disease (VEO-IBD) have been defined by genetic studies, which were usually related to primary immunodeficiencies. Receptor-interacting serine/threonine-protein kinase-1 (RIPK1) protein is an important signalling molecule in inflammation and cell death pathways. Its deficiency may lead to various clinical features linked to immunodeficiency and/or inflammation, including IBD. Here, we discuss an infant with malnutrition, VEO-IBD, recurrent infections and polyathritis who has a homozygous partial deletion in RIPK1 gene.


Subject(s)
Gene Deletion , Inflammatory Bowel Diseases , Receptor-Interacting Protein Serine-Threonine Kinases , Humans , Infant , Male , Age of Onset , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/diagnosis , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency
4.
Eur Arch Otorhinolaryngol ; 281(7): 3577-3586, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38400873

ABSTRACT

PURPOSE: Hearing loss (HL) is often monogenic. The clinical importance of genetic testing in HL may further increase when gene therapy products become available. Diagnoses are, however, complicated by a high genetic and allelic heterogeneity, particularly of autosomal dominant (AD) HL. This work aimed to characterize the mutational spectrum of AD HL in Austria. METHODS: In an ongoing prospective study, 27 consecutive index patients clinically diagnosed with non-syndromic AD HL, including 18 previously unpublished cases, were analyzed using whole-exome sequencing (WES) and gene panels. Novel variants were characterized using literature and bioinformatic means. Two additional Austrian medical centers provided AD HL mutational data obtained with in-house pipelines. Other Austrian cases of AD HL were gathered from literature. RESULTS: The solve rate (variants graded as likely pathogenic (LP) or pathogenic (P)) within our cohort amounted to 59.26% (16/27). MYO6 variants were the most common cause. One third of LP/P variants were truncating variants in haploinsufficiency genes. Ten novel variants in HL genes were identified, including six graded as LP or P. In one cohort case and one external case, the analysis uncovered previously unrecognized syndromic presentations. CONCLUSION: More than half of AD HL cases analyzed at our center were solved with WES. Our data demonstrate the importance of genetic testing, especially for the diagnosis of syndromic presentations, enhance the molecular knowledge of genetic HL, and support other laboratories in the interpretation of variants.


Subject(s)
Exome Sequencing , Mutation , Humans , Austria , Male , Female , Prospective Studies , Adult , Child , Adolescent , Child, Preschool , Middle Aged , Young Adult , Genetic Testing/methods , Genes, Dominant , Aged , Hearing Loss/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/diagnosis , Infant
5.
Br J Haematol ; 203(4): 678-683, 2023 11.
Article in English | MEDLINE | ID: mdl-37646304

ABSTRACT

Increasing evidence suggests multilineage cytopenias (also known as Evans syndrome) may be caused by inborn errors of immunity (IEI) with immune dysregulation. We studied a patient with autoimmune haemolytic anaemia and immune thrombocytopenia and identified a germline mutation in SASH3 (c.862C>T;p.Arg288Ter), indicating a recently identified IEI. Immunohistochemistry performed after clinically indicated splenectomy revealed severe hypoplasia/absence of germinal centres. The autoimmune phenotype was associated with an increased CD21low T-bet+ CD11c+ subset along with decreased regulatory T cells, impaired T-cell proliferation and T-cell exhaustion. The younger brother carries the same SASH3 mutation and shares immunophenotypic features but is currently clinical asymptomatic, indicating heterogeneity of SASH3 deficiency.


Subject(s)
Anemia, Hemolytic, Autoimmune , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Male , Humans , Anemia, Hemolytic, Autoimmune/genetics , Thrombocytopenia/genetics , Mutation
6.
J Allergy Clin Immunol ; 152(4): 1025-1031.e2, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37364720

ABSTRACT

BACKGROUND: In the isoprenoid biosynthesis pathway, mevalonate is phosphorylated in 2 subsequent enzyme steps by MVK and PMVK to generate mevalonate pyrophosphate that is further metabolized to produce sterol and nonsterol isoprenoids. Biallelic pathogenic variants in MVK result in the autoinflammatory metabolic disorder MVK deficiency. So far, however, no patients with proven PMVK deficiency due to biallelic pathogenic variants in PMVK have been reported. OBJECTIVES: This study reports the first patient with functionally confirmed PMVK deficiency, including the clinical, biochemical, and immunological consequences of a homozygous missense variant in PMVK. METHODS: The investigators performed whole-exome sequencing and functional studies in cells from a patient who, on clinical and immunological evaluation, was suspected of an autoinflammatory disease. RESULTS: The investigators identified a homozygous PMVK p.Val131Ala (NM_006556.4: c.392T>C) missense variant in the index patient. Pathogenicity was supported by genetic algorithms and modeling analysis and confirmed in patient cells that revealed markedly reduced PMVK enzyme activity due to a virtually complete absence of PMVK protein. Clinically, the patient showed various similarities as well as distinct features compared to patients with MVK deficiency and responded well to therapeutic IL-1 inhibition. CONCLUSIONS: This study reported the first patient with proven PMVK deficiency due to a homozygous missense variant in PMVK, leading to an autoinflammatory disease. PMVK deficiency expands the genetic spectrum of systemic autoinflammatory diseases, characterized by recurrent fevers, arthritis, and cytopenia and thus should be included in the differential diagnosis and genetic testing for systemic autoinflammatory diseases.

7.
Blood ; 142(9): 827-845, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37249233

ABSTRACT

The nuclear factor of activated T cells (NFAT) family of transcription factors plays central roles in adaptive immunity in murine models; however, their contribution to human immune homeostasis remains poorly defined. In a multigenerational pedigree, we identified 3 patients who carry germ line biallelic missense variants in NFATC1, presenting with recurrent infections, hypogammaglobulinemia, and decreased antibody responses. The compound heterozygous NFATC1 variants identified in these patients caused decreased stability and reduced the binding of DNA and interacting proteins. We observed defects in early activation and proliferation of T and B cells from these patients, amenable to rescue upon genetic reconstitution. Stimulation induced early T-cell activation and proliferation responses were delayed but not lost, reaching that of healthy controls at day 7, indicative of an adaptive capacity of the cells. Assessment of the metabolic capacity of patient T cells revealed that NFATc1 dysfunction rendered T cells unable to engage in glycolysis after stimulation, although oxidative metabolic processes were intact. We hypothesized that NFATc1-mutant T cells could compensate for the energy deficit due to defective glycolysis by using enhanced lipid metabolism as an adaptation, leading to a delayed, but not lost, activation responses. Indeed, we observed increased 13C-labeled palmitate incorporation into citrate, indicating higher fatty acid oxidation, and we demonstrated that metformin and rosiglitazone improved patient T-cell effector functions. Collectively, enabled by our molecular dissection of the consequences of loss-of-function NFATC1 mutations and extending the role of NFATc1 in human immunity beyond receptor signaling, we provide evidence of metabolic plasticity in the context of impaired glycolysis observed in patient T cells, alleviating delayed effector responses.


Subject(s)
NFATC Transcription Factors , T-Lymphocytes , Humans , Mice , Animals , T-Lymphocytes/metabolism , NFATC Transcription Factors/metabolism , CD8-Positive T-Lymphocytes , Glycolysis/genetics , Mutation
8.
Hum Genet ; 142(8): 1077-1089, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36445457

ABSTRACT

Loss-of-function variants in AP3D1 have been linked to Hermansky-Pudlak syndrome (HPS) 10, a severe multisystem disorder characterized by oculocutaneous albinism, immunodeficiency, neurodevelopmental delay, hearing loss (HL), and neurological abnormalities, fatal in early childhood. Here, we report a consanguineous family who presented with presumably isolated autosomal recessive (AR) HL. Whole-exome sequencing was performed on all core family members, and selected patients were screened using array-based copy-number analysis and karyotyping. Candidate variants were validated by Sanger sequencing and assessed in silico. A homozygous, likely pathogenic p.V711I missense variant in AP3D1 segregated with the HL. The family was characterized by thorough medical and laboratory examination. The HL was consistent across patients and accompanied by neurological manifestations in two brothers. The sole female patient was diagnosed with premature ovarian failure. Further findings, including mild neutropenia and reduced NK-cell cytotoxicity in some as well as brain alterations in all homozygous patients, were reminiscent of HPS10, though milder and lacking the characteristic albinism. Previously unrecognized, milder, isolated HL was identified in all heterozygous carriers. A protein model indicates that the variant interferes with protein-protein interactions. These results suggest that a missense variant alters inner-ear-specific functions leading to HL with mild HPS10-like symptoms of variable penetrance. Milder HL in heterozygous carriers may point towards semi-dominant inheritance of this trait. Since all previously reported HPS10 cases were pediatric, it is unknown whether the observed primary ovarian insufficiency recapitulates the subfertility in Ap3d1-deficient mice.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hermanski-Pudlak Syndrome , Male , Humans , Child, Preschool , Female , Animals , Mice , Hermanski-Pudlak Syndrome/diagnosis , Hermanski-Pudlak Syndrome/pathology , Mutation, Missense , Hearing Loss, Sensorineural/genetics , Carrier Proteins , Homozygote , Adaptor Protein Complex 3 , Adaptor Protein Complex delta Subunits , Adaptor Protein Complex beta Subunits
9.
Allergy Asthma Clin Immunol ; 18(1): 111, 2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36566211

ABSTRACT

BACKGROUND: Bullous pemphigoid is the most common autoimmune subepidermal blistering disorder with a low incidence in childhood. Combined immunodeficiencies (CIDs) are a group of monogenic inborn errors of immunity (IEIs) characterized by T- and B-cell dysfunction leading to recurrent infections, lymphoproliferation, predisposition to malignancy, and autoimmunity. Here, we report two Afghan siblings with a diagnosis of CID and extremely rare manifestation of diffuse bullous pemphigoid skin lesions. CASE PRESENTATION: The older sibling (patient 1) was a 32-month-old male with facial dysmorphism, protracted diarrhea, failure to thrive, recurrent oral candidiasis, recurrent otitis media with tympanic membrane perforation, who had been previously diagnosed with CID. While he was under treatment with intravenous immunoglobulin (IVIg), he developed extensive blistering lesions, which were diagnosed as childhood bullous pemphigoid. Methylprednisolone and azathioprine were added to the regimen, which resulted in a remarkable improvement of the skin lesions and also the feeding condition. However,2 weeks later, he was re-admitted to the intensive care unit (ICU) and eventually died due to fulminant sepsis. Later, his 12-month-old sister (patient 2) with similar facial dysmorphism and a history of developmental delay, food allergy, recurrent oral candidiasis, and respiratory tract infections also developed blistering skin lesions. She was under treatment for occasional eczematous lesions, and had been receiving IVIg for 3 months due to low levels of immunoglobulins. Further immunologic workup showed an underlying CID and thus treatment with IVIg continued, gradually improving her clinical condition. The genetic study of both siblings revealed a novel homozygous mutation in exon 7 of the PGM3 gene, c.845 T > C (p.Val282Ala). CONCLUSIONS: Dermatologic disorders may be the presenting sign in patients with CID and mutated PGM3. This case report further extends the spectrum of skin manifestations that could be observed in PGM3 deficiency and emphasizes the importance of considering CIDs during the assessment of skin disorders, particularly if they are extensive, recurrent, refractory to treatment, and/or associated with other signs of IEIs.

10.
Clin Otolaryngol ; 46(5): 1044-1049, 2021 09.
Article in English | MEDLINE | ID: mdl-33851515

ABSTRACT

OBJECTIVE: Identification of variations in tumour suppressor genes encoding the tetrameric succinate dehydrogenase (SDHx) mitochondrial enzyme complex may lead to personalised therapeutic concepts for the orphan disease, familial paraganglioma (PGL) type 1-5. We undertook to determine the causative variation in a family suffering from idiopathic early-onset (22 ± 2 years) head and neck PGL by PCR and Sanger sequencing. DESIGN: Prospective genetic study. SETTING: Tertiary Referral Otolaryngology Centre. PARTICIPANTS: Twelve family members. MAIN OUTCOME MEASURES: Main outcomes were clinical analysis and SDH genotyping RESULTS AND CONCLUSIONS: A novel heterozygous c.298delA frameshift variation in exon 3 of SDH subunit D (SDHD) was associated with a paternal transmission pattern of PGL in affected family members available to the study. Family history over five generations in adulthood indicated a variable penetrance for PGL inheritance in older generations. The c.298delA variant would cause translation of a 34-residue C-terminus distal to lysine residue 99 in the predicted transmembrane domain II of the full-length sequence p.(Thr100LeufsTer35) and would affect the translation products of all protein-coding SDHD isoforms containing transmembrane topologies required for positional integration in the inner mitochondrial membrane and complex formation. These results underly the importance of genetic screening for PGL also in cases of unclear inheritance, and variation carriers should benefit from screening and lifelong follow-up.


Subject(s)
Head and Neck Neoplasms/genetics , Paraganglioma/genetics , Succinate Dehydrogenase/genetics , Adult , Age of Onset , Aged, 80 and over , Austria , Exons , Female , Frameshift Mutation , Genetic Testing , Head and Neck Neoplasms/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Paraganglioma/diagnostic imaging , Pedigree , Penetrance , Phenotype , Prospective Studies , Young Adult
11.
Cancers (Basel) ; 13(9)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33923093

ABSTRACT

Oral tongue squamous cell carcinomas (OTSCCs) have an increasing incidence in young patients, and many have an aggressive course of disease. The objective of this study was to identify candidate prognostic protein markers associated with early-onset OTSCC. We performed an exploratory screening for differential protein expression in younger (≤45 years) versus older (>45 years) OTSCC patients in The Cancer Genome Atlas (TCGA) cohort (n = 97). Expression of candidate markers was then validated in an independent Austrian OTSCC patient group (n = 34) by immunohistochemistry. Kaplan-Meier survival estimates were computed, and genomic and mRNA enrichment in silico analyses were performed. Overexpression of protein kinase C alpha (PRKCA) was significantly more frequent among young patients of both the TCGA (p = 0.0001) and the Austrian cohort (p = 0.02), associated with a negative anamnesis for alcohol consumption (p = 0.009) and tobacco smoking (p = 0.02) and poorer overall survival (univariate p = 0.02, multivariate p< 0.01). Within the young subgroup, both overall and disease-free survival were significantly decreased in patients with PRKCA overexpression (both p < 0.001). TCGA mRNA enrichment analysis revealed 332 mRNAs with significant differential expression in PRKCA-upregulated versus PRKCA-downregulated OTSCC (all FDR ≤ 0.01). Our findings suggest that PRKCA overexpression may be a hallmark of a novel molecular subtype of early-onset alcohol- and tobacco-negative high-risk OTSCC. Further analysis of the molecular PRKCA interactome may decipher the underlying mechanisms of carcinogenesis and clinicopathological behavior of PRKCA-overexpressing OTSCC.

12.
Otol Neurotol ; 42(6): e648-e657, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33710140

ABSTRACT

INTRODUCTION: Genetic hearing loss (HL) is often monogenic. Whereas more than half of autosomal recessive (AR) cases in Austria are caused by mutations in a single gene, no disproportionately frequent contributing genetic factor has been identified in cases of autosomal dominant (AD) HL. The genetic characterization of HL continues to improve diagnosis, genetic counseling, and lays a foundation for the development of personalized medicine approaches. METHODS: Diagnostic HL panel screening was performed in an Austrian multiplex family with AD HL, and segregation was tested with polymerase chain reaction and Sanger sequencing. In an independent approach, 18 unrelated patients with AD HL were screened for causative variants in all known HL genes to date and segregation was tested if additional family members were available. The pathogenicity of novel variants was assessed based on previous literature and bioinformatic tools such as prediction software and protein modeling. RESULTS: In six of the 19 families under study, candidate pathogenic variants were identified in MYO6, including three novel variants (p.Gln441Pro, p.Ser612Tyr, and p.Gln650ValfsTer7). Some patients carried more than one likely pathogenic variant in known deafness genes. CONCLUSION: These results suggest a potential high prevalence of MYO6 variants in Austrian cases of AD HL. The presence of multiple rare HL variants in some patients highlights the relevance of considering multiple-hit diagnoses for genetic counseling and targeted therapy design.


Subject(s)
Deafness , Hearing Loss , Austria/epidemiology , Humans , Mutation , Pedigree , Prevalence
13.
Exp Eye Res ; 205: 108497, 2021 04.
Article in English | MEDLINE | ID: mdl-33596443

ABSTRACT

Nanophthalmos-4 is a rare autosomal dominant disorder caused by two known variations in TMEM98. An Austrian Caucasian pedigree was identified suffering from nanophthalmos and late onset angle-closure glaucoma and premature loss of visual acuity. Whole exome sequencing identified segregation of a c.602G > C transversion in TMEM98 (p.Arg201Pro) as potentially causative. A protein homology model generated showed a TMEM98 structure comprising α4, α5/6, α7 and α8 antiparallel helix bundles and two predicted transmembrane domains in α1 and α7 that have been confirmed in vitro. Both p.Arg201Pro and the two missense variations representing proline insertions identified previously to cause nanophthalmos-4 (p.Ala193Pro and p.His196Pro) are located in the charge polarized helix α8 (p.183-p210). Stability of the C-terminal alpha helical structure of TMEM98 is therefore essential to prevent the development of human nanophthalmos-4. Precise molecular diagnosis could lead to the development of tailored therapies for patients with orphan ocular disease.


Subject(s)
Glaucoma, Angle-Closure/genetics , Hyperopia/genetics , Membrane Proteins/genetics , Microphthalmos/genetics , Mutation, Missense , Vision Disorders/genetics , Visual Acuity/physiology , Adult , Aged, 80 and over , Amino Acid Substitution , Arginine , Female , Filtering Surgery , Glaucoma, Angle-Closure/physiopathology , Glaucoma, Angle-Closure/surgery , Humans , Hyperopia/physiopathology , Hyperopia/surgery , Lens Implantation, Intraocular , Male , Microphthalmos/physiopathology , Microphthalmos/surgery , Microscopy, Acoustic , Middle Aged , Pedigree , Phacoemulsification , Proline , Protein Conformation, alpha-Helical/genetics , Slit Lamp Microscopy , Vision Disorders/physiopathology , Exome Sequencing
14.
Front Cell Neurosci ; 14: 585669, 2020.
Article in English | MEDLINE | ID: mdl-33281559

ABSTRACT

Background: Hereditary hearing loss is a disorder with high genetic and allelic heterogeneity. Diagnostic screening of candidate genes commonly yields novel variants of unknown clinical significance. TBC1D24 is a pleiotropic gene associated with recessive DOORS syndrome, epileptic encephalopathy, myoclonic epilepsy, and both recessive and dominant hearing impairment. Genotype-phenotype correlations have not been established to date but could facilitate diagnostic variant assessment and elucidation of pathomechanisms. Methods and Results: Whole-exome and gene panel screening identified a novel (c.919A>C; p.Asn307His) causative variant in TBC1D24 in two unrelated Caucasian families with Autosomal dominant (AD) nonsyndromic late-onset hearing loss. Protein modeling on the Drosophila TBC1D24 ortholog Skywalker crystal structure showed close interhelix proximity (6.8Å) between the highly conserved residue p.Asn307 in α18 and the position of the single known pathogenic dominant variation (p.Ser178Leu) in α11 that causes a form of deafness with similar clinical characteristics. Conclusion: Genetic variants affecting two polar hydrophilic residues in neighboring helices of TBC1D24 cause AD nonsyndromic late-onset hearing loss. The spatial proximity of the affected residues suggests the first genotype-phenotype association in TBC1D24-related disorders. Three conserved residues in α18 contribute to the formation of a functionally relevant cationic phosphoinositide binding pocket that regulates synaptic vesicle trafficking which may be involved in the molecular mechanism of disease.

15.
Clin Exp Otorhinolaryngol ; 12(4): 405-411, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31220907

ABSTRACT

OBJECTIVES: Hereditary hemorrhagic telangiectasia (HHT) is a rare autosomal dominant genetic disorder characterized by pathogenic blood vessel development and maintenance. HHT type 1 (HHT1) and type 2 (HHT2) are caused by variants in endoglin (ENG) and activin receptor-like kinase-1 (ACVRL1), respectively. The aim of this study was to identify the spectrum of pathogenic variants in ENG and ACVRL1 in Austrian HHT families. METHODS: In this prospective study, eight Austrian HHT families were screened for variants in ENG and ACVRL1 by polymerase chain reaction amplification and sequencing of DNA isolated from peripheral blood. RESULTS: Heterozygous variants were identified in all families under study. HHT1 was caused by a novel c.816+1G>A splice donor variant, a novel c.1479C>A nonsense (p.Cys493X) variant and a published c.1306C>T nonsense (p.Gln436X) variant in ENG. Variants found in ACVRL1 were novel c.200G>C (p.Arg67Pro) and known c.772G>A (p.Gly258Ser) missense variants in highly conserved residues, a known heterozygous c.100dupT frameshift (p.Cys34Leufs*4) and the known c.1204G>A missense (p.Gly402Ser) and c.1435C>T nonsense (p.Arg479X) variants as causes of HHT2. CONCLUSION: Novel and published variants in ENG (37.5%) and ACVRL1 (62.5%) were exclusively identified as the cause of HHT in an Austrian patient cohort. Identification of novel causative genetics variants should facilitate the development of tailored therapeutical applications in the future treatment of autosomal dominant HHT.

16.
Wien Klin Wochenschr ; 130(9-10): 299-306, 2018 May.
Article in English | MEDLINE | ID: mdl-28733840

ABSTRACT

BACKGROUND: Non-syndromic autosomal dominant hearing impairment is characteristically postlingual in onset. Genetic diagnostics are essential for genetic counselling, disease prognosis and understanding of the molecular mechanisms of disease. To date, 36 causative genes have been identified, many in only individual families. Gene selection for genetic screening by traditional methods and genetic diagnosis in autosomal dominant patients has therefore been fraught with difficulty. Whole-exome sequencing provides a powerful tool to analyze all protein-coding genomic regions in parallel, thus allowing the comprehensive screening of all known genes and associated alterations. METHODS: In this study, a previously undiagnosed late-onset progressive autosomal dominant hearing loss in an Austrian family was investigated by means of whole-exome sequencing. Results were confirmed by Sanger sequencing. RESULTS: A previously described c.151C>T missense (p.Pro51Ser) mutation in the LCCL (limulus factor C, cochlin, late gestation lung protein Lgl1) domain of the cochlin gene (COCH) was identified as causative and segregated with disease in five members of the family. Molecular diagnostics led to the decision to perform cochlear implantation in an index patient who subsequently showed excellent postoperative auditory performance. The c.151C>T mutation was not found in 18 screened Austrian families with autosomal dominant hearing loss but was represented alongside other known pathogenic mutant COCH alleles in the Genome Aggregation Database (gnomAD) in European populations. A combined allele frequency of 0.000128 implies an orphan disease frequency for COCH-induced hearing loss of 1:3900 in Europe. CONCLUSIONS: Exome sequencing successfully resolved the genetic diagnosis in a family suffering from autosomal dominant hearing impairment and allowed prediction of purported auditory outcome after cochlear implantation in an index patient. Personalized treatment approaches based on the molecular mechanisms of disease may become increasingly important in the future.


Subject(s)
Exome Sequencing , Hearing Loss, Sensorineural , Austria , Europe , Exome , Extracellular Matrix Proteins , Female , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/rehabilitation , Humans , Male , Mutation , Pedigree , Exome Sequencing/methods
17.
Eur Arch Otorhinolaryngol ; 274(10): 3619-3625, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28821934

ABSTRACT

Bi-allelic variations in the gap junction protein beta-2 (GJB2) gene cause up to 50% of cases of newborn hearing loss. Heterozygous pathogenic GJB2 variations are also fivefold overrepresented in idiopathic patient groups compared to the normal-hearing population. Whether hearing loss in this group is due to unidentified additional variations within GJB2 or variations in other deafness genes is unknown in most cases. Whole-exome sequencing offers an effective approach in the search for causative variations in patients with Mendelian diseases. In this prospective genetic cohort study, we initially investigated a family of Turkish origin suffering from congenital autosomal recessive hearing loss. An index patient and his normal-hearing father, both bearing a single heterozygous pathogenic c.262G>T (p.Ala88Ser) GJB2 transversion as well as the normal-hearing mother were investigated by means of whole-exome sequencing. Subsequently the genetic screening was extended to a hearing-impaired cohort of 24 families of Turkish origin. A homozygous missense c.5492G>T transversion (p.Gly1831Val) in the Myosin 15a gene, previously linked to deafness, was identified as causative in the index family. This very rare variant is not listed in any population in the Genome Aggregation Database. Subsequent screening of index patients from additional families of Turkish origin with recessive hearing loss identified the c.5492G>T variation in an additional family. Whole-exome sequencing may effectively identify the causes of idiopathic hearing loss in patients bearing heterozygous GJB2 variations.


Subject(s)
Connexins/genetics , Hearing Loss, Sensorineural , Adult , Austria/epidemiology , Connexin 26 , Female , Genetic Testing/methods , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sensorineural/genetics , Humans , Infant, Newborn , Male , Mutation , Prospective Studies , Turkey , Exome Sequencing/methods
18.
Otol Neurotol ; 38(2): 173-179, 2017 02.
Article in English | MEDLINE | ID: mdl-27861301

ABSTRACT

BACKGROUND: Heterozygous mutations in GJB2 (MIM: 121011) encoding the gap junction protein connexin 26 are overrepresented in patient groups suffering from nonsyndromic sensorineural hearing impairment (HI) implying the involvement of additional genetic factors. Mutations in SLC26A4 (MIM: 605646), encoding the protein pendrin can cause both Pendred syndrome and autosomal recessive, nonsyndromic HI locus 4 type sensorineural HI (MIM: 600791). OBJECTIVES: Aim of this study was to investigate the role of SLC26A4 coding mutations in a nonsyndromic hearing impairment (NSHI) patient group bearing heterozygous GJB2 35delG mutations. DESIGN: We analyzed the 20 coding exons of SLC26A4 in a group of patients (n = 15) bearing heterozygous 35delG mutations and exclusively suffering from congenital HI. RESULTS: In a case of bilateral congenital hearing loss we identified a rare, novel SLC26A4 exon 2 splice donor mutation (c.164+1delG) predicted to truncate pendrin in the first cytoplasmic domain, as a compound heterozygote with the pathogenic missense mutation c.1061T>C (p.354F>S; rs111033243). CONCLUSIONS: Screening for SLC26A4 mutations may identify the genetic causes of hearing loss in patients bearing heterozygous mutations in GJB2. HYPOTHESIS: SLC26A4 coding mutations are genetic causes for nonsyndromic HI in patients bearing heterozygous GJB2 35delG mutations.


Subject(s)
Hearing Loss, Bilateral/genetics , Hearing Loss, Sensorineural/genetics , Membrane Transport Proteins/genetics , Adult , Child , Child, Preschool , Connexin 26 , Connexins/genetics , Exons , Female , Heterozygote , Humans , Infant , Male , Middle Aged , Mutation , Sulfate Transporters , Young Adult
19.
Acta Otolaryngol ; 137(4): 356-360, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27827000

ABSTRACT

CONCLUSION: Alterations within a novel putative Exon 1a within the gap junction beta 2 (GJB2) gene may play a role in the development of genetic hearing impairment in Austria. OBJECTIVES: Mutations in the GJB2 gene are the most common cause of hereditary sensorineural deafness. Genome-wide screening for alternative transcriptional start sites in the human genome has revealed the presence of an additional GJB2 exon (E1a). This study tested the hypothesis of whether alternative GJB2 transcription involving E1a may play a role in the development of congenital sensorineural deafness in Austria. METHODS: GJB2 E1a and flanking regions were sequenced in randomized normal hearing control subjects and three different patient groups with non-syndromic hearing impairment (NSHI), and bioinformatic analysis was performed. Statistical analysis of disease association was carried out using the Cochran-Armitage test for trend. RESULTS: A single change 2410 bp proximal to the translational start site (c.-2410T > C, rs7994748, NM_004004.5:c.-23 + 792T > C) was found to be significantly associated with the common c.35delG GJB2 mutation (p = .009). c.35delG in combination with c.-2410CC occurred at a 6.9-fold increased frequency compared to the control group. Additionally, one patient with idiopathic congenital hearing loss was found to be homozygous c.-2410CC.


Subject(s)
Connexins/genetics , Hearing Loss, Sensorineural/genetics , Alternative Splicing , Austria , Base Sequence , Case-Control Studies , Connexin 26 , Exons , Gene Frequency , Genetic Testing , Hearing Loss, Sensorineural/congenital , Hearing Loss, Sensorineural/diagnosis , Heterozygote , Humans , Mass Screening , Polymorphism, Genetic
20.
Audiol Neurootol ; 19(3): 203-9, 2014.
Article in English | MEDLINE | ID: mdl-24801666

ABSTRACT

Norrie disease is a rare, X-linked genetic syndrome characterized by combined congenital blindness and progressive hearing impairment. Norrie disease is caused by alterations in the NDP gene encoding the growth factor norrin that plays a key role in vascular development and stabilization of the eye, inner ear and brain. We identified a family with 3 affected deafblind males and a single female carrier presenting with a serous retinal detachment but normal hearing. Genetic analysis revealed a novel c.277T>C missense mutation causing the substitution of a hydrophobic cysteine to a hydrophilic arginine [p.(Cys93Arg)] within the highly conserved cysteine knot domain of the norrin protein. These results should expand the scope for amniocentesis and genetic testing for Norrie disease which is gaining in importance due to novel postnatal therapeutic concepts to alleviate the devastating retinal symptoms of Norrie disease.


Subject(s)
Blindness/congenital , Eye Proteins/genetics , Mutation, Missense , Nerve Tissue Proteins/genetics , Nervous System Diseases/genetics , Spasms, Infantile/genetics , Blindness/genetics , Family , Female , Genetic Diseases, X-Linked , Genetic Testing , Humans , Male , Pedigree , Retinal Degeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...