Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Immunol ; 11: 696, 2020.
Article in English | MEDLINE | ID: mdl-32411134

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the activation of autoreactive T and B cells, autoantibody production, and immune complex deposition in various organs. Previous evidence showed abnormal accumulation of B cells in the thymus of lupus-prone mice, but the role of this population in the progression of the disease remains mostly undefined. Here we analyzed the spatial distribution, function, and properties of this thymic B cell population in the BWF1 murine model of SLE. We found that in diseased animals, thymic B cells proliferate, and cluster in structures that resemble ectopic germinal centers. Moreover, we detected antibody-secreting cells in the thymus of diseased-BWF1 mice that produce anti-dsDNA IgG autoantibodies. We also found that thymic B cells from diseased-BWF1 mice induced the differentiation of thymocytes to follicular helper T cells (TFH). These data suggest that the accumulation of B cells in the thymus of BWF1 mice results in the formation of germinal center-like structures and the expansion of a TFH population, which may, in turn, activate and differentiate B cells into autoreactive plasma cells. Therefore, the thymus emerges as an important niche that supports the maintenance of the pathogenic humoral response in the development of murine SLE.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Immunity, Humoral , Lupus Erythematosus, Systemic/immunology , T Follicular Helper Cells/immunology , Thymus Gland/immunology , Animals , Autoantibodies/immunology , Cell Differentiation , Cells, Cultured , Coculture Techniques , DNA/immunology , Disease Models, Animal , Female , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred NZB , Plasma Cells/immunology
2.
Immunol Res ; 65(4): 957-968, 2017 08.
Article in English | MEDLINE | ID: mdl-28741259

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by increased autoantibody production that leads to multiple tissue injuries. Dendritic cells (DCs) are important orchestrators of immune responses and key components in fine-tuning the balance between tolerance and immunity. However, their role in autoimmune disorders such as SLE remains uncertain. We analyzed the contribution of DCs in triggering SLE by adoptively transferring splenic DCs from aged autoimmune [NZB×NZW]F1 (BWF1) mice to young healthy BWF1 mice. We observed that the transfer of DCs from autoimmune mice to pre-autoimmune mice induced high autoantibody titers in the serum of recipient mice. Moreover, autoimmune DCs from aged BWF1 mice were crucial for the expansion and differentiation of plasmablasts and CD5+ B cells or B1-like cells in the peripheral blood, and spleen of recipient BWF1 mice, a phenomenon that is observed in autoimmune BWF1 mice. On the other hand, DCs from aged BWF1 mice participated in the expansion and differentiation of DCs and IFN-γ-producing T cells. These results reveal that DCs from autoimmune BWF1 mice exhibit functional and phenotypic characteristics that allow them to trigger B cell hyperactivation, as well as DC and T cell expansion and differentiation, thereby promoting an exacerbated humoral response in lupus-prone mice.


Subject(s)
Aging/physiology , B-Lymphocytes/immunology , Dendritic Cells/immunology , Lupus Erythematosus, Systemic/immunology , Spleen/pathology , T-Lymphocytes/immunology , Adoptive Transfer , Animals , Autoantibodies/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Dendritic Cells/transplantation , Humans , Immunity, Humoral , Interferon-gamma/metabolism , Lymphocyte Activation , Mice , Mice, Inbred NZB
3.
PLoS One ; 11(6): e0157889, 2016.
Article in English | MEDLINE | ID: mdl-27322617

ABSTRACT

T helper type 17 (Th17) lymphocytes, characterized by the production of interleukin-17 and other pro-inflammatory cytokines, are present in intestinal lamina propria and have been described as important players driving intestinal inflammation. Recent evidence, supporting the notion of a functional and phenotypic instability of Th17 cells, has shown that Th17 differentiate into type 1 regulatory (Tr1) T cells during the resolution of intestinal inflammation. Moreover, it has been suggested that the expression of CD39 ectonucleotidase endows Th17 cells with immunosuppressive properties. However, the exact role of CD39 ectonucleotidase in Th17 cells has not been studied in the context of intestinal inflammation. Here we show that Th17 cells expressing CD39 ectonucleotidase can hydrolyze ATP and survive to ATP-induced cell death. Moreover, in vitro-generated Th17 cells expressing the CD39 ectonucleotidase produce IL-10 and are less pathogenic than CD39 negative Th17 cells in a model of experimental colitis in Rag-/- mice. Remarkably, we show that CD39 activity regulates the conversion of Th17 cells to IL-10-producing cells in vitro, which is abrogated in the presence of ATP and the CD39-specific inhibitor ARL67156. All these data suggest that CD39 expression by Th17 cells allows the depletion of ATP and is crucial for IL-10 production and survival during the resolution of intestinal inflammation.


Subject(s)
Antigens, CD/metabolism , Apyrase/metabolism , Receptors, Purinergic/metabolism , Signal Transduction , Th17 Cells/immunology , 5'-Nucleotidase/metabolism , Adenosine Triphosphate/pharmacology , Animals , Cell Death/drug effects , Cell Survival/drug effects , Colitis/immunology , Colitis/pathology , Hydrolysis , Inflammation/pathology , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-23/metabolism , Intestines/pathology , Mice, Inbred C57BL , Phenotype , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL