Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(5): 3643-3667, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38393759

ABSTRACT

Steroid-based histamine H3 receptor antagonists (d-homoazasteroids) were designed by combining distinct structural elements of HTS hit molecules. They were characterized, and several of them displayed remarkably high affinity for H3 receptors with antagonist/inverse agonist features. Especially, the 17a-aza-d-homolactam chemotype demonstrated excellent H3R activity together with significant in vivo H3 antagonism. Optimization of the chemotype was initiated with special emphasis on the elimination of the hERG and muscarinic affinity. Additionally, ligand-based SAR considerations and molecular docking studies were performed to predict binding modes of the molecules. The most promising compounds (XXI, XXVIII, and XX) showed practically no muscarinic and hERG affinity. They showed antagonist/inverse agonist property in the in vitro functional tests that was apparent in the rat in vivo dipsogenia test. They were considerably stable in human and rat liver microsomes and provided significant in vivo potency in the place recognition and novel object recognition cognitive paradigms.


Subject(s)
Histamine H3 Antagonists , Receptors, Histamine H3 , Rats , Humans , Animals , Histamine , Drug Inverse Agonism , Receptors, Histamine H3/metabolism , Molecular Docking Simulation , Histamine Agonists/pharmacology , Histamine Agonists/metabolism , Steroids , Microsomes, Liver/metabolism , Histamine H3 Antagonists/pharmacology , Histamine Antagonists
2.
Eur J Med Chem ; 214: 113189, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33540354

ABSTRACT

The paper focuses on the scaffold hopping-based discovery and characterization of novel nicotinic alpha 7 receptor positive modulator (α7 nAChR PAM) ligands around the reference molecule (A-867744). First, substantial efforts were carried out to assess the importance of the various pharmacophoric elements on the in vitro potency (SAR evaluation) by chemical modifications. Subsequently, several new derivatives with versatile, heteroaromatic central cores were synthesized and characterized. A promising, pyrazole-containing new chemotype with good physicochemical and in vitro parameters was identified. Retrospective analysis based on homology modeling was also carried out. Besides its favorable in vitro characteristics, the most advanced derivative 69 also showed in vivo efficacy in a rodent model of cognition (scopolamine-induced amnesia in the mouse place recognition test) and acceptable pharmacokinetic properties. Based on the in vivo data, the resulting molecule with advanced drug-like characteristics has the possibility to improve cognitive performance in a biologically relevant dose range, further strengthening the view of the supportive role of α7 nACh receptors in the cognitive processes.


Subject(s)
Drug Discovery , Nicotinic Agonists/pharmacology , Pyrazoles/pharmacology , Administration, Oral , Allosteric Regulation/drug effects , Amnesia/chemically induced , Amnesia/drug therapy , Amnesia/metabolism , Animals , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Male , Maze Learning/drug effects , Mice , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Nicotinic Agonists/administration & dosage , Nicotinic Agonists/metabolism , Pyrazoles/administration & dosage , Pyrazoles/metabolism , Rats , Rats, Wistar , Scopolamine , Structure-Activity Relationship , alpha7 Nicotinic Acetylcholine Receptor
3.
Bioorg Med Chem Lett ; 29(20): 126643, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31492518

ABSTRACT

To further proceed with our previous work, novel steroid-based histamine H3 receptor antagonists were identified and characterized. Using an 'amine-to-amide' modification strategy at position 17, in vitro and in vivo potent monoamino steroid derivatives were found during the lead optimization. Usage of the non-basic amide moiety resulted in beneficial effects both in activity and selectivity. The 15α-carboxamido derivative 10 was not only highly active at human and rat H3 receptors, but also showed negligible activity at rat muscarinic receptors. Furthermore, it proved to be considerably stable in human and rat microsomes and showed significant in vivo potency in the pharmacodynamic rat dipsogenia test and in the water-labyrinth cognitive model. Based on all of these considerations, compound 10 was appointed to be a preclinical candidate.


Subject(s)
Amides/chemistry , Histamine Antagonists/chemistry , Receptors, Histamine H3/metabolism , Amides/pharmacology , Animals , Histamine Antagonists/metabolism , Humans , Male , Molecular Structure , Muscle Contraction/drug effects , Rats , Rats, Wistar , Receptors, Muscarinic/chemistry , Solubility , Steroids/chemistry
4.
Bioorg Med Chem Lett ; 27(19): 4525-4530, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28888822

ABSTRACT

Emerging from an HTS campaign, novel steroid-based histamine H3 receptor antagonists were identified and characterized. Structural moieties of the hit compounds were combined to improve binding affinities which resulted in compound 4 as lead molecule. During the lead optimization due to the versatile modifications of diamino steroid derivatives, several in vitro potent compounds with subnanomolar binding affinities to histamine H3 receptors were found. The unfavorable binding to rat muscarinic receptors was successfully reduced by tuning the basicity. Compound 20 showed significant in vivo activity in the rat dipsogenia model and could serve as a pharmacological tool in the future.


Subject(s)
Drug Discovery , Histamine Agonists/pharmacology , Histamine H3 Antagonists/pharmacology , Receptors, Histamine H3/metabolism , Animals , Dose-Response Relationship, Drug , Histamine Agonists/chemical synthesis , Histamine Agonists/chemistry , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/chemistry , Humans , Molecular Structure , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...