Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 25(10): 1695-1700, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36926926

ABSTRACT

A broadly applicable and efficient method for the synthesis of N-alkyliminophosphoranes from phosphines that does not use potentially hazardous alkyl azides is reported. Under iron catalysis, a hydroxylamine-derived triflic acid salt oxidizes phosphines to a wide range of iminophosphorane triflic acid salts. Diphosphines afford phosphine-iminophosphoranes that can serve as ligands in transition metal complexes. The developed method can be employed in the synthesis of mixed diiminophosphoranes and in a traceless Staudinger ligation.

2.
Angew Chem Int Ed Engl ; 59(47): 21064-21071, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32761827

ABSTRACT

Secondary and tertiary alkylamines are privileged substance classes that are often found in pharmaceuticals and other biologically active small molecules. Herein, we report their direct synthesis from alkenes through an aminative difunctionalization reaction enabled by iron catalysis. A family of ten novel hydroxylamine-derived aminating reagents were designed for the installation of several medicinally relevant amine groups, such as methylamine, morpholine and piperazine, through the aminochlorination of alkenes. The method has excellent functional group tolerance and a broad scope of alkenes was converted to the corresponding products, including several drug-like molecules. Besides aminochlorination, the installation of other functionalities through aminoazidation, aminohydroxylation and even intramolecular carboamination reactions, was demonstrated, further highlighting the broad potential of these new reagents for the discovery of novel amination reactions.


Subject(s)
Amines/chemical synthesis , Hydroxylamine/chemical synthesis , Iron/chemistry , Alkenes/chemistry , Amines/chemistry , Catalysis , Drug Design , Hydroxylamine/chemistry , Molecular Structure
3.
Eur J Appl Physiol ; 118(9): 1857-1867, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29936549

ABSTRACT

PURPOSE: To compare peak oxygen uptake (VO2peak) and exercise efficiency between upper-body poling (UBP) and arm crank ergometry (ACE) in able-bodied (AB) and paraplegic participants (PARA). METHODS: Seven PARA and eleven AB upper-body trained participants performed four 5-min submaximal stages, and an incremental test to exhaustion in UBP and ACE. VO2peak was the highest 30-s average during the incremental test. Metabolic rate (joule/second = watt) at fixed power outputs of 40, 60, and 80 W was estimated using linear regression analysis on the original power-output-metabolic-rate data and used to compare exercise efficiency between exercise modes and groups. RESULTS: VO2peak did not significantly differ between UBP and ACE (p = 0.101), although peak power output was 19% lower in UBP (p < 0.001). Metabolic rate at fixed power outputs was 24% higher in UBP compared to ACE (p < 0.001), i.e., exercise efficiency was lower in UBP. PARA had 24% lower VO2peak compared to AB (p = 0.010), although there were no significant differences in peak power output between PARA and AB (p = 0.209). CONCLUSIONS: In upper-body-trained PARA and AB participants, VO2peak did not differ between UBP and ACE, indicating that these two test modes tax the cardiovascular system similarly when the upper body is restricted. As such, the 19% lower peak power output in UBP compared to ACE may be explained by the coinciding lower efficiency.


Subject(s)
Arm/physiology , Exercise/physiology , Oxygen Consumption/physiology , Oxygen/metabolism , Paraplegia/physiopathology , Adult , Energy Metabolism/physiology , Ergometry/methods , Exercise Test/methods , Female , Humans , Male , Middle Aged , Paraplegia/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL