Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(21): eadj1564, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781347

ABSTRACT

Resistance to therapy commonly develops in patients with high-grade serous ovarian carcinoma (HGSC) and triple-negative breast cancer (TNBC), urging the search for improved therapeutic combinations and their predictive biomarkers. Starting from a CRISPR knockout screen, we identified that loss of RB1 in TNBC or HGSC cells generates a synthetic lethal dependency on casein kinase 2 (CK2) for surviving the treatment with replication-perturbing therapeutics such as carboplatin, gemcitabine, or PARP inhibitors. CK2 inhibition in RB1-deficient cells resulted in the degradation of another RB family cell cycle regulator, p130, which led to S phase accumulation, micronuclei formation, and accelerated PARP inhibition-induced aneuploidy and mitotic cell death. CK2 inhibition was also effective in primary patient-derived cells. It selectively prevented the regrowth of RB1-deficient patient HGSC organoids after treatment with carboplatin or niraparib. As about 25% of HGSCs and 40% of TNBCs have lost RB1 expression, CK2 inhibition is a promising approach to overcome resistance to standard therapeutics in large strata of patients.


Subject(s)
Casein Kinase II , Retinoblastoma Binding Proteins , Humans , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/metabolism , Casein Kinase II/genetics , Retinoblastoma Binding Proteins/metabolism , Retinoblastoma Binding Proteins/genetics , Female , Cell Line, Tumor , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Carboplatin/pharmacology , Synthetic Lethal Mutations , DNA Replication/drug effects , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology
2.
Dev Cell ; 58(12): 1106-1121.e7, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37148882

ABSTRACT

The broad research use of organoids from high-grade serous ovarian cancer (HGSC) has been hampered by low culture success rates and limited availability of fresh tumor material. Here, we describe a method for generation and long-term expansion of HGSC organoids with efficacy markedly improved over previous reports (53% vs. 23%-38%). We established organoids from cryopreserved material, demonstrating the feasibility of using viably biobanked tissue for HGSC organoid derivation. Genomic, histologic, and single-cell transcriptomic analyses revealed that organoids recapitulated genetic and phenotypic features of original tumors. Organoid drug responses correlated with clinical treatment outcomes, although in a culture conditions-dependent manner and only in organoids maintained in human plasma-like medium (HPLM). Organoids from consenting patients are available to the research community through a public biobank and organoid genomic data are explorable through an interactive online tool. Taken together, this resource facilitates the application of HGSC organoids in basic and translational ovarian cancer research.


Subject(s)
Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Organoids/pathology , Genomics
3.
Cell Rep ; 35(10): 109220, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34107253

ABSTRACT

Several types of pathogenic bacteria produce genotoxins that induce DNA damage in host cells. Accumulating evidence suggests that a central function of these genotoxins is to dysregulate the host's immune response, but the underlying mechanisms remain unclear. To address this issue, we investigated the effects of the most widely expressed bacterial genotoxin, the cytolethal distending toxin (CDT), on T cells-the key mediators of adaptive immunity. We show that CDT induces premature senescence in activated CD4 T cells in vitro and provide evidence suggesting that infection with genotoxin-producing bacteria promotes T cell senescence in vivo. Moreover, we demonstrate that genotoxin-induced senescent CD4 T cells assume a senescence-associated secretory phenotype (SASP) which, at least partly, is orchestrated by the ATM-p38 signaling axis. These findings provide insight into the immunomodulatory properties of bacterial genotoxins and uncover a putative link between bacterial infections and T cell senescence.


Subject(s)
Cellular Senescence/genetics , DNA Damage/genetics , Mutagens/metabolism , T-Lymphocytes/metabolism , Humans
4.
Int J Mol Sci ; 19(5)2018 May 08.
Article in English | MEDLINE | ID: mdl-29738516

ABSTRACT

Cytotoxic necrotizing factor 1 (CNF1) is a bacterial protein toxin primarily expressed by pathogenic Escherichia coli strains, causing extraintestinal infections. The toxin is believed to enhance the invasiveness of E. coli by modulating the activity of Rho GTPases in host cells, but it has interestingly also been shown to promote inflammation, stimulate host immunity and function as a potent immunoadjuvant. The mechanisms underlying the immunostimulatory properties of CNF1 are, however, poorly characterized, and little is known about the direct effects of the toxin on immune cells. Here, we show that CNF1 induces expression of maturation markers on human immature monocyte-derived dendritic cells (moDCs) without compromising cell viability. Consistent with the phenotypic maturation, CNF1 further triggered secretion of proinflammatory cytokines and increased the capacity of moDCs to stimulate proliferation of allogenic naïve CD4+ T cells. A catalytically inactive form of the toxin did not induce moDC maturation, indicating that the enzymatic activity of CNF1 triggers immature moDCs to undergo phenotypic and functional maturation. As the maturation of dendritic cells plays a central role in initiating inflammation and activating the adaptive immune response, the present findings shed new light on the immunostimulatory properties of CNF1 and may explain why the toxin functions as an immunoadjuvant.


Subject(s)
Adjuvants, Immunologic/pharmacology , Bacterial Toxins/chemistry , Dendritic Cells/drug effects , Escherichia coli Proteins/chemistry , Inflammation/drug therapy , Adjuvants, Immunologic/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/pharmacology , Cell Survival/drug effects , Dendritic Cells/immunology , Escherichia coli/chemistry , Escherichia coli/pathogenicity , Escherichia coli Proteins/genetics , Escherichia coli Proteins/pharmacology , Humans , Inflammation/immunology , Inflammation/pathology , Monocytes/drug effects , Monocytes/immunology , rho GTP-Binding Proteins/genetics
5.
J Colloid Interface Sci ; 511: 251-258, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29028576

ABSTRACT

Materials science offers new perspectives in the clinical analysis of antimicrobial sensitivity. However, a biomaterial with the capacity to respond to living bacteria has not been developed to date. We present an electrochromic iron(III)-complexed alginate hydrogel sensitive to bacterial metabolism, here applied to fast antibiotic-susceptibility determination. Bacteria under evaluation are entrapped -and pre-concentrated- in the hydrogel matrix by oxidation of iron (II) ions to iron (III) and in situ formation of the alginate hydrogel in less than 2min and in soft experimental conditions (i.e. room temperature, pH 7, aqueous solution). After incubation with the antibiotic (10min), ferricyanide is added to the biomaterial. Bacteria resistant to the antibiotic dose remain alive and reduce ferricyanide to ferrocyanide, which reacts with the iron (III) ions in the hydrogel to produce Prussian Blue molecules. For a bacterial concentration above 107 colony forming units per mL colour development is detectable with the bare eye in less than 20min. The simplicity, sensitivity, low-cost and short response time of the biomaterial and the assay envisages a high impact of these approaches on sensitive sectors such as public health system, food and beverage industries or environmental monitoring.


Subject(s)
Alginates/chemistry , Anti-Bacterial Agents , Escherichia coli/growth & development , Ferric Compounds , Hydrogels , Staphylococcus aureus/growth & development , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Ferric Compounds/chemical synthesis , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogels/chemical synthesis , Hydrogels/chemistry , Hydrogels/pharmacology , Microbial Sensitivity Tests/methods , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL