Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Vaccines (Basel) ; 11(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38140177

ABSTRACT

Glycoconjugate vaccines play a major role in the prevention of infectious diseases worldwide, with significant impact on global health, enabling the polysaccharides to induce immunogenicity in infants and immunological memory. Tetanus toxoid (TT), a chemically detoxified bacterial toxin, is among the few carrier proteins used in licensed glycoconjugate vaccines. The recombinant full-length 8MTT was engineered in E. coli with eight individual amino acid mutations to inactivate three toxin functions. Previous studies in mice showed that 8MTT elicits a strong IgG response, confers protection, and can be used as a carrier protein. Here, we compared 8MTT to traditional carrier proteins TT and cross-reactive material 197 (CRM197), using different polysaccharides as models: Group A Streptococcus cell-wall carbohydrate (GAC), Salmonella Typhi Vi, and Neisseria meningitidis serogroups A, C, W, and Y. The persistency of the antibodies induced, the ability of the glycoconjugates to elicit booster response after re-injection at a later time point, the eventual carrier-induced epitopic suppression, and immune interference in multicomponent formulations were also evaluated. Overall, immunogenicity responses obtained with 8MTT glycoconjugates were compared to those obtained with corresponding TT and, in some cases, were higher than those induced by CRM197 glycoconjugates. Our results support the use of 8MTT as a good alternative carrier protein for glycoconjugate vaccines, with advantages in terms of manufacturability compared to TT.

2.
Vaccines (Basel) ; 11(7)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37515035

ABSTRACT

Generalized Modules for Membrane Antigens (GMMA) are outer membrane vesicles derived from Gram-negative bacteria that can be used to design affordable subunit vaccines. GMMA have been observed to induce a potent humoral immune response in preclinical and clinical studies. In addition, in preclinical studies, it has been found that GMMA can be exploited as optimal antigen carriers for both protein and saccharide antigens, as they are able to promote the enhancement of the antigen-specific humoral immune response when the antigen is overexpressed or chemically conjugated to GMMA. Here we investigated the mechanism of this GMMA carrier effect by immunizing mice and using factor H binding protein and GMMA of Neisseria meningitidis B as an antigen-GMMA model. We confirmed that the antigen displayed on the GMMA surface increased the antigen-specific IgG production and, above all, the antibody functionality measured by the serum bactericidal activity. We found that the enhancement of the bactericidal capacity induced by GMMA carrying the antigen on the surface was associated with the increase in antibody affinity to the antigen, and with the switching toward IgG subclasses with more bactericidal potential. Thus, we conclude that the potent carrier effect of GMMA is due to their ability to promote a better quality of humoral immunity.

3.
Sensors (Basel) ; 23(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37420575

ABSTRACT

BACKGROUND: In recent years, due to the epidemiological transition, the burden of very complex patients in hospital wards has increased. Telemedicine usage appears to be a potential high-impact factor in helping with patient management, allowing hospital personnel to assess conditions in out-of-hospital scenarios. METHODS: To investigate the management of chronic patients during both hospitalization for disease and discharge, randomized studies (LIMS and Greenline-HT) are ongoing in the Internal Medicine Unit at ASL Roma 6 Castelli Hospital. The study endpoints are clinical outcomes (from a patient's perspective). In this perspective paper, the main findings of these studies, from the operators' point of view, are reported. Operator opinions were collected from structured and unstructured surveys conducted among the staff involved, and their main themes are reported in a narrative manner. RESULTS: Telemonitoring appears to be linked to a reduction in side-events and side-effects, which represent some of most commons risk factors for re-hospitalization and for delayed discharge during hospitalization. The main perceived advantages are increased patient safety and the quick response in case of emergency. The main disadvantages are believed to be related to low patient compliance and an infrastructural lack of optimization. CONCLUSIONS: The evidence of wireless monitoring studies, combined with the analysis of activity data, suggests the need for a model of patient management that envisages an increase in the territory of structures capable of offering patients subacute care (the possibility of antibiotic treatments, blood transfusions, infusion support, and pain therapy) for the timely management of chronic patients in the terminal phase, for which treatment in acute wards must be guaranteed only for a limited time for the management of the acute phase of their diseases.


Subject(s)
Hospitalization , Telemedicine , Humans , Hospitals , Patient Discharge
4.
Vaccines (Basel) ; 10(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893831

ABSTRACT

GMMA are outer membrane vesicles (OMVs) released from Gram-negative bacteria genetically modified to enhance OMVs formation that have been shown to be optimal systems to enhance immunogenicity of protein antigens. Here, we selected Neisseria meningitidis factor H binding protein (fHbp) and used the conjugation chemistry as a tool to alter antigen orientation on GMMA. Indeed, fHbp was randomly linked to GMMA or selectively attached via the N-terminus to mimic native presentation of the protein on the bacterial surface. Interestingly, protein and peptide array analyses confirmed that antibodies induced by the selective and the random conjugates showed a pattern very similar to fHbp natively expressed on bacterial surfaces or to the recombinant protein mixed with GMMA, respectively. However, the two conjugates elicited antibodies with similar serum bactericidal activity against meningococcal strains, superior to the protein alone or physically mixed with GMMA. Presentation of fHbp on GMMA strongly enhances the functional immune response elicited by the protein but its orientation on the bacterial surface does not have an impact. This study demonstrates the flexibility of the GMMA platform as a display and delivery system for enhancing antigen immunogenicity and further supports the use of such promising technology for the development of effective vaccines.

5.
FASEB J ; 30(1): 93-101, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26304221

ABSTRACT

Neisseria adhesin A (NadA) is one of the antigens of Bexsero, the recently licensed multicomponent vaccine against serogroup B Neisseria meningitidis (MenB). NadA belongs to the class of oligomeric coiled-coil adhesins and is able to mediate adhesion and invasion of human epithelial cells. As a vaccine antigen, NadA has been shown to induce high levels of bactericidal antibodies; however, the domains important for protective response are still unknown. In order to further investigate its immunogenic properties, we have characterized the murine IgG1 mAb (6E3) that was able to recognize the 2 main antigenic variants of NadA on the surface of MenB strains. The epitope targeted by mAb 6E3 was mapped by hydrogen-deuterium exchange mass spectrometry and shown to be located on the coiled-coil stalk region of NadA (aa 206-249). Although no serum bactericidal activity was observed for murine IgG1 mAb 6E3, functional activity was restored when using chimeric antibodies in which the variable regions of the murine mAb 6E3 were fused to human IgG3 constant regions, thus confirming the protective nature of the mAb 6E3 epitope. The use of chimeric antibody molecules will enable future investigations of complement-mediated antibody functionality independently of the Fc-mediated differences in complement activation.


Subject(s)
Adhesins, Bacterial/immunology , Antibodies, Bacterial/immunology , Epitopes/immunology , Meningococcal Infections/immunology , Meningococcal Vaccines/immunology , Neisseria/immunology , Animals , Deuterium Exchange Measurement/methods , Epitope Mapping/methods , Humans , Mice
6.
Proc Natl Acad Sci U S A ; 108(27): 11169-74, 2011 Jul 05.
Article in English | MEDLINE | ID: mdl-21690334

ABSTRACT

Oil-in-water emulsions have been successfully used to increase the efficacy, immunogenicity, and cross-protection of human vaccines; however, their mechanism of action is still largely unknown. Nlrp3 inflammasome has been previously associated to the activity of alum, another adjuvant broadly used in human vaccines, and MyD88 adaptor protein is required for the adjuvanticity of most Toll-like receptor agonists. We compared the contribution of Nlrp3 and MyD88 to the adjuvanticity of alum, the oil-in-water emulsion MF59, and complete Freund's adjuvant in mice using a three-component vaccine against serogroup B Neisseria meningitidis (rMenB). Although the basal antibody responses to the nonadjuvanted rMenB vaccine were largely dependent on Nlrp3, the high-level antibody responses induced by alum, MF59, or complete Freund's adjuvant did not require Nlrp3. Surprisingly, we found that MF59 requires MyD88 to enhance bactericidal antibody responses to the rMenB vaccine. Because MF59 did not activate any of the Toll-like receptors in vitro, we propose that MF59 requires MyD88 for a Toll-like receptor-independent signaling pathway.


Subject(s)
Adjuvants, Immunologic/pharmacology , Carrier Proteins/metabolism , Myeloid Differentiation Factor 88/metabolism , Polysorbates/pharmacology , Squalene/pharmacology , Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , Animals , Antibodies, Bacterial/biosynthesis , Bacterial Vaccines/administration & dosage , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Emulsions , Female , Freund's Adjuvant/administration & dosage , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/genetics , NLR Family, Pyrin Domain-Containing 3 Protein , Neisseria meningitidis, Serogroup B/immunology , Polysorbates/administration & dosage , Signal Transduction , Squalene/administration & dosage , Toll-Like Receptors/metabolism , Vaccines, Synthetic/administration & dosage
7.
Proc Natl Acad Sci U S A ; 103(29): 10834-9, 2006 Jul 18.
Article in English | MEDLINE | ID: mdl-16825336

ABSTRACT

Meningitis and sepsis caused by serogroup B meningococcus are two severe diseases that still cause significant mortality. To date there is no universal vaccine that prevents these diseases. In this work, five antigens discovered by reverse vaccinology were expressed in a form suitable for large-scale manufacturing and formulated with adjuvants suitable for human use. The vaccine adjuvanted by aluminum hydroxide induced bactericidal antibodies in mice against 78% of a panel of 85 meningococcal strains representative of the global population diversity. The strain coverage could be increased to 90% and above by the addition of CpG oligonucleotides or by using MF59 as adjuvant. The vaccine has the potential to conquer one of the most devastating diseases of childhood.


Subject(s)
Meningococcal Vaccines/immunology , Neisseria meningitidis, Serogroup B/immunology , Animals , Antibodies/immunology , Antigens, Bacterial/immunology , Disease Models, Animal , Humans , Meningitis, Meningococcal/immunology , Meningitis, Meningococcal/microbiology , Meningitis, Meningococcal/prevention & control , Mice , Microscopy, Electron, Transmission , Neisseria meningitidis, Serogroup B/classification , Neisseria meningitidis, Serogroup B/ultrastructure , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...