Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Interv Neuroradiol ; : 15910199241250082, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693768

ABSTRACT

OBJECTIVE: Aspiration with a pump or syringe is a mainstay of mechanical thrombectomy (MT) for acute ischemic stroke (AIS), but this technology has seen minimal evolution. Non-continuous adaptive pulsatile aspiration (APA) has been proposed as a potential alternative to standard continuous aspiration as a means of improving revascularization efficiency. METHODS: Using a pathophysiological flow bench model with a synthetic clot, we performed in vitro thrombectomies using the ALGO® Von Vascular, Inc. (Sunrise, FL) APA pump. A total of 25 FDA-approved aspiration catheters were tested, representing inner diameters (ID) from 0.035 in. to 0.088 in. The pump was used in 30 trials with each catheter to remove a simulated M1 occlusion. Revascularization, clot ingestion, time to clot removal, and distal embolization were measured. RESULTS: Among catheters tested using APA, first-pass TICI 3 revascularization was achieved in 100% of the 750 thrombectomy trials using 25 different catheters. There were no distal emboli detected in any trial run. Complete clot ingestion into the pump collection chamber was achieved in 87% to 100% of trials (overall 95%) with clot in the remaining trials corking within the catheter and removed from the model. Time from clot contact to clot removal ranged from 11 s to 90 s (mean 22.6 s, SD 16.8 s), which was negatively correlated with catheter ID (p = 0.007). CONCLUSION: APA via the Von Vascular, Inc. ALGO® pump achieved a high success rate in an in vitro MT model. All catheters tested with the pump achieved complete reperfusion in all trials, and complete clot ingestion into the pump was seen in a majority of trials. The promising in vitro performance of APA using multiple catheters warrants future in vivo investigation.

2.
Arch Environ Contam Toxicol ; 64(2): 187-97, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23104522

ABSTRACT

There is a need for effective, environmentally compatible photoacid generators (PAGs) for application in photolithography for microelectronic device fabrication. Perfluoroalkyl sulfonates (PFAS) used in conventional PAG formulations, such as perfluorooctane sulfonate (PFOS), are under increasing scrutiny due to their widespread environmental distribution and toxicity. Recently, two new PFAS-free, PAG anions with semifluorinated sulfonate anions containing biomolecules (γ-butyrolactone or D-glucose groups) were successfully applied as PAGs. In this study, the biodegradation potential, cytotoxicity, and physicochemical treatability of the new PAG anions was evaluated. PFOS and perfluorobutane sulfonate (PFBS) were used as reference materials in all of the assays. The new PAGs were susceptible to partial degradation by microorganisms in aerobic activated sludge, and these were also readily removed by chemical oxidative treatment with Fenton's reagent [H(2)O(2)/Fe(II)]. In contrast, the compounds were resistant to microbial and chemical attack under reductive conditions as indicated by the low removal efficiencies observed with anaerobic biodegradation assays and chemical assays with zero-valent iron, respectively. The enhanced biodegradation potential and treatability make of the new PAGs attractive materials to resolve current issues related to the lithographic performance and environmental concerns.


Subject(s)
Fluorocarbons/chemistry , Photochemical Processes , Alkanesulfonic Acids/chemistry , Alkanesulfonic Acids/toxicity , Biodegradation, Environmental , Chemical Industry , Fluorocarbons/toxicity , Risk Assessment , Semiconductors
3.
Biodegradation ; 20(4): 499-510, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19089588

ABSTRACT

Citrate is an important component of metal processing effluents such as chemical mechanical planarization wastewaters of the semiconductor industry. Citrate can serve as an electron donor for sulfate reduction applied to promote the removal of metals, and it can also potentially be used by methanogens that coexist in anaerobic biofilms. The objective of this study was to evaluate the degradation of citrate with sulfate-reducing and methanogenic biofilms. During batch bioassays, the citrate, acetate, methane and sulfide concentrations were monitored. The results indicate that independent of the biofilm or incubation conditions used, citrate was rapidly fermented with specific rates ranging from 566 to 720 mg chemical oxygen demand (COD) consumed per gram volatile suspended solids per day. Acetate was found to be the main fermentation product of citrate degradation, which was later degraded completely under either methanogenic or sulfate reducing conditions. However, if either sulfate reduction or methanogenesis was infeasible due to specific inhibitors (2-bromoethane sulfonate), absence of sulfate or lack of adequate microorganisms in the biofilm, acetate accumulated to levels accounting for 90-100% of the citrate-COD consumed. Based on carbon balances measured in phosphate buffered bioassays, acetate, CO(2) and hydrogen are the main products of citrate fermentation, with a molar ratio of 2:2:1 per mol of citrate, respectively. In bicarbonate buffered bioassays, acetogenesis of H(2) and CO(2) increased the yield of acetate. The results taken as a whole suggest that in anaerobic biofilm systems, citrate is metabolized via the formation of acetate as the main metabolic intermediate prior to methanogenesis or sulfate reduction. Sulfate reducing consortia must be enriched to utilize acetate as an electron donor in order to utilize the majority of the electron-equivalents in citrate.


Subject(s)
Anaerobiosis , Citrates/metabolism , Euryarchaeota/metabolism , Sulfates/metabolism , Biofilms , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...