Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Hepatology ; 65(5): 1581-1599, 2017 05.
Article in English | MEDLINE | ID: mdl-27981621

ABSTRACT

Recently, we have shown that coexpression of hMet and mutant-ß-catenin using sleeping beauty transposon/transposase leads to hepatocellular carcinoma (HCC) in mice that corresponds to around 10% of human HCC. In the current study, we investigate whether Ras activation, which can occur downstream of Met signaling, is sufficient to cause HCC in association with mutant-ß-catenin. We also tested therapeutic efficacy of targeting ß-catenin in an HCC model. We show that mutant-K-Ras (G12D), which leads to Ras activation, cooperates with ß-catenin mutants (S33Y, S45Y) to yield HCC in mice. Affymetrix microarray showed > 90% similarity in gene expression in mutant-K-Ras-ß-catenin and Met-ß-catenin HCC. K-Ras-ß-catenin tumors showed up-regulation of ß-catenin targets like glutamine synthetase (GS), leukocyte cell-derived chemotaxin 2, Regucalcin, and Cyclin-D1 and of K-Ras effectors, including phosphorylated extracellular signal-regulated kinase, phosphorylated protein kinase B, phosphorylated mammalian target of rapamycin, phosphorylated eukaryotic translation initiation factor 4E, phosphorylated 4E-binding protein 1, and p-S6 ribosomal protein. Inclusion of dominant-negative transcription factor 4 at the time of K-Ras-ß-catenin injection prevented HCC and downstream ß-catenin and Ras signaling. To address whether targeting ß-catenin has any benefit postestablishment of HCC, we administered K-Ras-ß-catenin mice with EnCore lipid nanoparticles (LNP) loaded with a Dicer substrate small interfering RNA targeting catenin beta 1 (CTNNB1; CTNNB1-LNP), scrambled sequence (Scr-LNP), or phosphate-buffered saline for multiple cycles. A significant decrease in tumor burden was evident in the CTNNB1-LNP group versus all controls, which was associated with dramatic decreases in ß-catenin targets and some K-Ras effectors, leading to reduced tumor cell proliferation and viability. Intriguingly, in relatively few mice, non-GS-positive tumors, which were evident as a small subset of overall tumor burden, were not affected by ß-catenin suppression. CONCLUSION: Ras activation downstream of c-Met is sufficient to induce clinically relevant HCC in cooperation with mutant ß-catenin. ß-catenin suppression by a clinically relevant modality is effective in treatment of ß-catenin-positive, GS-positive HCCs. (Hepatology 2017;65:1581-1599).


Subject(s)
Carcinoma, Hepatocellular/etiology , Genes, ras , Liver Neoplasms, Experimental/etiology , beta Catenin/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms, Experimental/metabolism , MAP Kinase Signaling System , Male , Mice , TOR Serine-Threonine Kinases/metabolism , beta Catenin/antagonists & inhibitors , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL