Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 203
Filter
1.
J Biophotonics ; : e202400308, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375540

ABSTRACT

Bioluminescence tomography (BLT) is one kind of noninvasive optical molecular imaging technology, widely used to study molecular activities and disease progression inside live animals. By combining the optical propagation model and inversion algorithm, BLT enables three-dimensional imaging and quantitative analysis of light sources within organisms. However, challenges like light scattering and absorption in tissues, and the complexity of biological structures, significantly impact the accuracy of BLT reconstructions. Here, we propose a dictionary learning method based on K-sparse approximation and Orthogonal Procrustes analysis (KSAOPA). KSAOPA uses an iterative alternating optimization strategy, enhancing solution sparsity with k-coefficients Lipschitzian mappings for sparsity(K-LIMAPS) in the sparse coding stage, and reducing errors with Orthogonal Procrustes analysis in the dictionary update stage, leading to stable and precise reconstructions. We assessed the method performance through simulations and in vivo experiments, which showed that KSAOPA excels in localization accuracy, morphological recovery, and in vivo applicability compared to other methods.

2.
Article in English | MEDLINE | ID: mdl-39226170

ABSTRACT

Aims: Arterial stiffness, a hallmark of vascular aging, significantly contributes to hypertension and impaired organ perfusion. Vascular smooth muscle cell (VSMC) dysfunction, particularly VSMC senescence and its interaction with stiffness, is crucial in the pathogenesis of arterial stiffness. Although hydrogen sulfide (H2S) and its key enzyme cystathionine γ-lyase (CSE) are known to play roles in cardiovascular diseases, their effects on arterial stiffness are not well understood. Methods & Results: First, we observed a downregulation of CSE/H2S in the aortic media during biological aging and angiotensin II (AngII)-induced aging. The VSMC-specific CSE knockout mice were created by loxp-cre (Tagln-cre) system and which exacerbated AngII-induced aortic aging and stiffness in vivo and VSMC senescence and stiffness in vitro. Conversely, the CSE agonist norswertianolin mitigated these effects. Next, we identified growth arrest-specific 1 (Gas1) as a crucial target of CSE/H2S and found it to be a downstream target gene of forkhead box protein M1 (Foxm1). siRNA knockdown Foxm1 increased Gas1 transcription and reduced the protective effects of H2S on VSMC senescence and stiffness. Finally, we demonstrated that CSE/H2S sulfhydrates Foxm1 at the C210 site, regulating its nuclear translocation and activity, thus reducing VSMC senescence and stiffness. Innovation: Our findings highlight the protective role of CSE/H2S in arterial stiffness, emphasizing the novel contributions of CSE, Gas1, and Foxm1 to VSMC senescence and stiffness. Conclusion: Endogenous CSE/H2S in VSMCs reduces VSMC senescence and stiffness, thereby attenuating arterial stiffness and aging, partly through sulfhydration-mediated activation of Foxm1 and subsequent inhibition of Gas1 signaling pathways.

3.
Biomed Opt Express ; 15(9): 5162-5179, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39296417

ABSTRACT

Cone beam X-ray luminescence computed tomography (CB-XLCT) is an emerging imaging technique with potential for early 3D tumor detection. However, the reconstruction challenge due to low light absorption and high scattering in tissues makes it a difficult inverse problem. In this study, the online dictionary learning (ODL) method, combined with iterative reduction FISTA (IR-FISTA), has been utilized to achieve high-quality reconstruction. Our method integrates IR-FISTA for efficient and accurate sparse coding, followed by an online stochastic approximation for dictionary updates, effectively capturing the sparse features inherent to the problem. Additionally, a re-sparse step is introduced to enhance the sparsity of the solution, making it better suited for CB-XLCT reconstruction. Numerical simulations and in vivo experiments were conducted to assess the performance of the method. The SODL-IR-FISTA achieved the smallest location error of 0.325 mm in in vivo experiments, which is 58% and 45% of the IVTCG-L 1 (0.562 mm) and OMP-L 0 (0.721 mm), respectively. Additionally, it has the highest DICE similarity coefficient, which is 0.748. The results demonstrate that our approach outperforms traditional methods in terms of localization precision, shape restoration, robustness, and practicality in live subjects.

4.
J Nanobiotechnology ; 22(1): 390, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961442

ABSTRACT

BACKGROUND: Zinc oxide nanoparticle (ZnO NP) is one of the metal nanomaterials with extensive use in many fields such as feed additive and textile, which is an emerging threat to human health due to widely distributed in the environment. Thus, there is an urgent need to understand the toxic effects associated with ZnO NPs. Although previous studies have found accumulation of ZnO NPs in testis, the molecular mechanism of ZnO NPs dominated a decline in male fertility have not been elucidated. RESULTS: We reported that ZnO NPs exposure caused testicular dysfunction and identified spermatocytes as the primary damaged site induced by ZnO NPs. ZnO NPs led to the dysfunction of spermatocytes, including impaired cell proliferation and mitochondrial damage. In addition, we found that ZnO NPs induced ferroptosis of spermatocytes through the increase of intracellular chelatable iron content and lipid peroxidation level. Moreover, the transcriptome analysis of testis indicated that ZnO NPs weakened the expression of miR-342-5p, which can target Erc1 to block the NF-κB pathway. Eventually, ferroptosis of spermatocytes was ameliorated by suppressing the expression of Erc1. CONCLUSIONS: The present study reveals a novel mechanism in that miR-342-5p targeted Erc1 to activate NF-κB signaling pathway is required for ZnO NPs-induced ferroptosis, and provide potential targets for further research on the prevention and treatment of male reproductive disorders related to ZnO NPs.


Subject(s)
Ferroptosis , MicroRNAs , NF-kappa B , Signal Transduction , Spermatocytes , Testis , Zinc Oxide , Animals , Male , Mice , Cell Proliferation/drug effects , Ferroptosis/drug effects , Lipid Peroxidation/drug effects , Metal Nanoparticles/chemistry , MicroRNAs/metabolism , MicroRNAs/genetics , NF-kappa B/metabolism , Signal Transduction/drug effects , Spermatocytes/metabolism , Spermatocytes/drug effects , Testis/metabolism , Testis/drug effects , Zinc Oxide/pharmacology , Zinc Oxide/chemistry
5.
Metabolism ; 158: 155977, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053690

ABSTRACT

BACKGROUND: Although metabolic disturbance is a characteristic of diabetic cardiomyopathy (DbCM), the detailed pathogenesis of DbCM remains unknown. METHODS: We used a heart transplantation (HTx) cohort to explore the effect of diabetes mellitus on heart failure (HF) progression dependent of myocardium. Microscopic and ultramicroscopic pathology were used to depict the pathological features of human myocardium of DbCM. We performed targeted metabolomics to characterize the metabolic phenotype of human DbCM. Transcriptomics data were analyzed and weighted gene co-expression network analysis was performed to explore the potential upstream regulator for metabolic remodeling of DbCM. In vivo and in vitro experiments were further conducted to demonstrate the therapeutic effects and molecular mechanisms. RESULTS: DbCM promoted the progression of HF and increased death or HF-rehospitalization after HTx. Lipid accumulation and mitochondrial fission were the obvious pathological features of DbCM myocardium. The concentrations of C14:0-CoA and C16:1-CoA were significantly increased in the myocardium, and they were positively correlated with the accelerated HF progression and RCAN1 expression in DbCM patients. Knockdown of RCAN1 improved cardiac dysfunction, lipid accumulation, and mitochondrial fission in db/db mice. In vitro studies showed that RCAN1 knockdown improved mitochondrial dysfunction in DbCM cardiomyocytes via the RCAN1-p-Drp1 Ser616 axis. CONCLUSIONS: Diabetes is associated with faster progression of HF and causes poor prognosis after HTx, accompanied by metabolic remodeling in the myocardium. Accumulation of long chain acyl-CoA in the myocardium is the metabolic hallmark of human DbCM and is associated with more rapid disease progression for DbCM patients. Upregulation of RCAN1 in the myocardium is associated with the metabolic signatures of DbCM and RCAN1 is a potential therapeutic target for DbCM.


Subject(s)
Diabetic Cardiomyopathies , Lipid Metabolism , Mitochondrial Dynamics , Animals , Female , Humans , Male , Mice , Middle Aged , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Heart Failure/metabolism , Heart Failure/etiology , Heart Transplantation , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Lipid Metabolism/physiology , Mice, Inbred C57BL , Mitochondrial Dynamics/physiology , Muscle Proteins/metabolism , Muscle Proteins/genetics , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
6.
Chemosphere ; 362: 142699, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944354

ABSTRACT

Predicting the parameters that influence colloidal phosphorus (CP) release from soils under different land uses is critical for managing the impact on water quality. Traditional modeling approaches, such as linear regression, may fail to represent the intricate relationships that exist between soil qualities and environmental influences. Therefore, in this study, we investigated the major determinants of CP release from different land use/types such as farmland, desert, forest soils, and rivers. The study utilizes the structural equation model (SEM), multiple linear regression (MLR), and three machine learning (ML) models (Random Forest (RF), Support Vector Regression (SVR), and eXtreme Gradient Boosting (XGBoost)) to predict the release of CP from different soils by using soil iron (Fe), aluminum (Al), calcium (Ca), pH, total organic carbon (TOC) and precipitation as independent variables. Results show that colloidal-cations (Fe, Al, Ca) and colloidal-TOC strongly influence CP release, while bioclimatic variables (precipitation) and pH have weaker effects. XGBoost outperforms the other models with an R2 of 0.94 and RMSE of 0.09. SHapley Additive Explanations described the outcomes since XGBoost is accurate. The relative relevance ranking indicated that colloidal TOC had the highest ranking in predicting CP. This was supported by the analysis of partial dependence plots, which showed that an increase in colloidal TOC increased soil CP release. According to our research, the SHAP XGBoost model provides significant information that can help determine the variables that considerably influence CP contents as compared to RF, SVM, and MLR.


Subject(s)
Colloids , Machine Learning , Phosphorus , Soil , Phosphorus/analysis , Phosphorus/chemistry , Soil/chemistry , Colloids/chemistry , Soil Pollutants/analysis , Linear Models , Environmental Monitoring/methods , Iron/chemistry
7.
Syst Parasitol ; 101(3): 40, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739253

ABSTRACT

A novel Eimeria Schneider, 1875 species is described from an Australian pied oystercatcher Haematopus longirostris Vieillot, in Western Australia. The pied oystercatcher was admitted to the Kanyana Wildlife Rehabilitation Centre (KWRC), Perth, Western Australia in a poor body condition, abrasion to its right hock and signs of partial delamination to its lower beak. Investigation into potential medical causes resulted in a faecal sample being collected and screened for gastrointestinal parasites. Unsporulated coccidian oocysts were initially observed in the faeces and identified as Eimeria upon sporulation. The sporulated oocysts (n = 20) are ellipsoidal, 20-21 × 12-13 µm in shape and have thick bi-layered walls which are c.2/3 of the total thickness. Micropyle is present, robust and protruding, and occasionally has a rounded polar body attached to the micropyle. Within the oocyst, a residuum, in addition, two to five polar granules are present. There are four ellipsoidal sporocysts 9-11 × 5-6 µm with flattened to half-moon shaped Stieda bodies. Sub-Stieda body and para-Stieda body are absent. The sporocysts contain sporocyst residuums composed of a few spherules scattered among the sporozoites. Within the sporozoites, anterior and posterior refractile bodies are present, but the nucleus is indiscernible. To further characterise the novel Eimeria species from H. longirostris, molecular analysis was conducted at the 18S ribosomal RNA locus, using PCR amplification and cloning. Two cloned sequences from the novel Eimeria were compared with those from other Eimeria spp. with the highest genetic similarity of 97.6% and 97.2% from Clone 1 and 2, respectively with Eimeria reichenowi (AB544308) from a hooded crane (Grus monacha Temminck) in Japan. Both sequences grouped in a clade with the Eimeria spp. isolated from wetland birds, which include Eimeria paludosa (KJ767187) from a dusky moorhen (Gallinula tenebrosa Gould) in Western Australia, Eimeria reichenowi (AB544308) and Eimeria gruis (AB544336) both from hooded cranes. Based on the morphological and molecular data, this Eimeria sp. is a new species of coccidian parasite and is named Eimeria haematopusi n. sp. after its host H. longirostris.


Subject(s)
Eimeria , Phylogeny , RNA, Ribosomal, 18S , Animals , Eimeria/genetics , Eimeria/classification , RNA, Ribosomal, 18S/genetics , Western Australia , Charadriiformes/parasitology , Feces/parasitology , Oocysts , Coccidiosis/parasitology , Coccidiosis/veterinary , Species Specificity , Bird Diseases/parasitology , DNA, Protozoan/genetics
8.
Talanta ; 275: 126078, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38678921

ABSTRACT

A method for simultaneous determination of nitrogen content and 15N isotope abundance in plants was established by Elemental analysis-gas isotope ratio mass spectrometry. Taking poplar leaves and l-glutamic acid as standards, nitrogen content was determined using the standard curve established by weighted least squares regression between the mass of nitrogen element and the total peak height intensity at m/z 28 and 29. Then the 15N isotope abundance was calculated with the peak height intensity at m/z 28 and 29. Through the comparison of several sets of experiments, the impact of mass discrimination effect, tin capsule consumables, isotope memory effect, and the quality of nitrogen on the results were assessed. The results showed that with a weight of 1/x2, the standard curve has a coefficient of determination (R2) of 0.9996. Compared to the traditional Kjeldahl method, the measured nitrogen content deviated less than 0.2 %, and the standard deviation (SD) was less than 0.2 %. Compared to the sodium hypobromite method, the 15N isotopic abundances differed less than 0.2 atom%15N, and the SD was less than 0.2 atom% 15N. The established method offers the advantages of being fast, simple, accurate, and high throughput, providing a novel approach for the simultaneous determination of nitrogen content and 15N isotope abundance in plant samples.


Subject(s)
Nitrogen Isotopes , Nitrogen , Nitrogen Isotopes/analysis , Nitrogen/analysis , Nitrogen/chemistry , Plant Leaves/chemistry , Mass Spectrometry/methods , Populus/chemistry
9.
Sci Rep ; 14(1): 8321, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594471

ABSTRACT

Endometrial fibrosis is the histologic appearance of intrauterine adhesion (IUA). Emerging evidences demonstrated umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-exo) could alleviate endometrial fibrosis. But the specific mechanism is not clear. In this study, we explored the effect of UCMSC-exo on endometrial fibrosis, and investigated the possible role of miR-140-3p/FOXP1/Smad axis in anti-fibrotic properties of UCMSC-exo. UCMSC-exo were isolated and identified. Transforming growth factor-ß (TGF-ß) was used to induce human endometrial stromal cell (HESC) fibrosis. Dual luciferase assay was performed to verify the relationship between miR-140-3p and FOXP1. The expressions of fibrotic markers, SIP1, and p-Smad2/p-Smad3 in HESCs stimulated with UCMSC-exo were detected by western blot. In addition, the effects of miR-140-3p mimic, miR-140-3p inhibitor and FOXP1 over-expression on endometrial fibrosis were assessed. The isolated UCMSC-exo had a typical cup-shaped morphology and could be internalized into HESCs. The expressions of fibrotic markers were significantly increased by TGF-ß, which was reversed by UCMSC-exo. MiR-140-3p in UCMSC-exo ameliorated TGf-ß-induced HESCs fibrosis. FOXP1 was identified as the direct target of miR-140-3p, which could inversely regulate miR-140-3p's function on HESCs fibrosis. Furthermore, we demonstrated that miR-140-3p in UCMSC-exo regulated Smad signal pathway to exert the anti-fibrotic effect in HESCs. The anti-fibrotic effect of UCMSC-derived exosomes against HESC fibrosis was at least partially achieved by miR-140-3p/FOXP1/Smad axis.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Uterine Diseases , Humans , Female , Exosomes/genetics , Stromal Cells , Transforming Growth Factor beta , Umbilical Cord , MicroRNAs/genetics , Fibrosis , Repressor Proteins , Forkhead Transcription Factors/genetics
10.
Adv Sci (Weinh) ; 11(18): e2308535, 2024 May.
Article in English | MEDLINE | ID: mdl-38454537

ABSTRACT

Covalent organic frameworks (COFs) face limited processability challenges as photoelectrodes in photoelectrochemical water reduction. Herein, sub-10 nm benzothiazole-based colloidal conjugated reticular oligomers (CROs) are synthesized using an aqueous nanoreactor approach, and the end-capping molecular strategy to engineer electron-deficient units onto the periphery of a CRO nanocrystalline lattices (named CROs-Cg). This results in stable and processable "electronic inks" for flexible photoelectrodes. CRO-BtzTp-Cg and CRO-TtzTp-Cg expand the absorption spectrum into the infrared region and improve fluorescence lifetimes. Heterojunction device engineering is used to develop interlayer heterojunction and bulk heterojunction (BHJ) photoelectrodes with a hole transport layer, electron transport layer, and the main active layers, using a CROs/CROs-Cg or one-dimensional (1D) electron-donating polymer HP18 mixed solution via spinning coating. The ITO/CuI/CRO-TtzTp-Cg-HP18/SnO2/Pt photoelectrode shows a photocurrent of 94.9 µA cm‒2 at 0.4 V versus reversible hydrogen electrode (RHE), which is 47.5 times higher than that of ITO/Bulk-TtzTp. Density functional theory calculations show reduced energy barriers for generating adsorbed H* intermediates and increased electron affinity in CROs-Cg. Mott-Schottky and charge density difference analyses indicate enhanced charge carrier densities and accelerated charge transfer kinetics in BHJ devices. This study lays the groundwork for large-scale production of COF nanomembranes and heterojunction structures, offering the potential for cost-effective, printable energy systems.

11.
J Clin Nurs ; 33(6): 2178-2189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38439173

ABSTRACT

AIMS: This study aims to investigate the current situation of needlestick injuries (NSIs) of clinical nurses and identify associated factors by using the theoretical framework of the human factors analysis and classification system (HFACS). DESIGN: A nationwide cross-sectional survey was conducted. METHODS: Multi-stage sampling was used to investigate 3336 nurses in 14 Chinese hospitals. Descriptive statistics and univariate and multivariate logistic regression were employed to reveal the rate of NSIs and their associated factors. RESULTS: A total of 970 nurses (29.1%) reported having experienced at least one NSI in the past year. The multivariate logistic regression analysis showed that good hospital safety climate and clinical nurses in intensive care unit (ICU) and emergency department had protective effects against NSIs compared with nurses in internal medicine department. The nurse, senior nurse, and nurse in charge have significantly increased the risk for NSIs compared with the associate chief nurse or above. Patients with poor vision but wearing glasses and poor vision but not wearing glasses were more prone to have NSIs. Working in the operating room compared with internal medicine, average weekly working time of >45 h compared with ≤40 h and poor general health led to increased risk of NSIs. CONCLUSION: The rate of NSIs in clinical nurses was high in China. Individual factors including professional title, department, visual acuity and general mental health and organisational factors including weekly working hours and hospital safety atmosphere were significantly correlated with the occurrence of NSIs. RELEVANCE TO CLINICAL PRACTICE: Nursing managers should focused on physical and psychological conditions of clinical nurses, and organisational support is required to enhance the hospital safety atmosphere. NO PATIENT OR PUBLIC CONTRIBUTION: Contributions from patients or the public are irrelevant because this study aims to explore current situation and factors associated with NSIs in clinical nurses.


Subject(s)
Needlestick Injuries , Nursing Staff, Hospital , Humans , Cross-Sectional Studies , Needlestick Injuries/epidemiology , Adult , Female , China/epidemiology , Male , Nursing Staff, Hospital/statistics & numerical data , Surveys and Questionnaires , Middle Aged , Factor Analysis, Statistical , Risk Factors
12.
Toxins (Basel) ; 16(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38535825

ABSTRACT

Toad Venom (TV) is the dried product of toxic secretions from Bufo bufo gargarizans Cantor (BgC) or B. melanostictus Schneider (BmS). Given the increasing medical demand and the severe depletion of wild toads, a number of counterfeit TVs appeared on the market, posing challenges to its quality control. In order to develop an efficient, feasible, and comprehensive approach to evaluate TV quality, a thorough analysis and comparison of chemical compounds among legal species BgC and BmS, as well as the main confusion species B. andrewsi Schmidt (BaS) and B. raddei Strauch (BrS), were conducted by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), high performance liquid chromatography (HPLC), sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and Nano LC-MS/MS analyses. We identified 126 compounds, including free or conjugated bufadienolides, indole alkaloids and amino acids, among the four Bufo species. The content of main bufadienolides, such as gamabufotalin, bufotalin, bufalin, cinobufagin, and resibufogenin, and the total protein contents varied widely among 28 batches of TV due to their origin species. The sum of the five bufadienolides within the BgC, BmS, BaS, and BrS samples were 8.15-15.93%, 2.45-4.14%, 11.15-13.50%, and 13.21-14.68%, respectively. The total protein content of BgC (6.9-24.4%) and BaS (19.1-20.6%) samples were higher than that of BmS (4.8-20.4%) and BrS (10.1-13.7%) samples. Additionally, a total of 1357 proteins were identified. There were differences between the protein compositions among the samples of the four Bufo species. The results indicated that BgC TV is of the highest quality; BaS and BrS TV could serve as alternative resources, whereas BmS TV performed poorly overall. This research provides evidence for developing approaches to evaluate TV quality and selecting the proper Bufo species as the origin source of TV listed in the Chinese pharmacopoeia.


Subject(s)
Bufanolides , Tandem Mass Spectrometry , Animals , Amino Acids , Bufonidae
13.
Am J Chin Med ; 52(2): 355-386, 2024.
Article in English | MEDLINE | ID: mdl-38533569

ABSTRACT

Metabolic syndrome (MetS) represents a considerable clinical and public health burden worldwide. Mangiferin (MF), a flavonoid compound present in diverse species such as mango (Mangifera indica L.), papaya (Pseudocydonia sinensis (Thouin) C. K. Schneid.), zhimu (Anemarrhena asphodeloides Bunge), and honeybush tea (Cyclopia genistoides), boasts a broad array of pharmacological effects. It holds promising uses in nutritionally and functionally targeted foods, particularly concerning MetS treatment. It is therefore pivotal to systematically investigate MF's therapeutic mechanism for MetS and its applications in food and pharmaceutical sectors. This review, with the aid of a network pharmacology approach complemented by this experimental studies, unravels possible mechanisms underlying MF's MetS treatment. Network pharmacology results suggest that MF treats MetS effectively through promoting insulin secretion, targeting obesity and inflammation, alleviating insulin resistance (IR), and mainly operating via the phosphatidylinositol 3 kinase (PI3K)/Akt, nuclear factor kappa-B (NF-[Formula: see text]B), microtubule-associated protein kinase (MAPK), and oxidative stress signaling pathways while repairing damaged insulin signaling. These insights provide a comprehensive framework to understand MF's potential mechanisms in treating MetS. These, however, warrant further experimental validation. Moreover, molecular docking techniques confirmed the plausibility of the predicted outcomes. Hereafter, these findings might form the theoretical bedrock for prospective research into MF's therapeutic potential in MetS therapy.


Subject(s)
Metabolic Syndrome , Xanthones , Humans , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Phosphatidylinositol 3-Kinases , Molecular Docking Simulation , Prospective Studies , Proto-Oncogene Proteins c-akt/metabolism
14.
J Ethnopharmacol ; 325: 117890, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38336186

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dang-Gui-Si-Ni (DGSN) decoction is a classic prescription in the clinical practice of traditional Chinese Medicine (TCM). DGSN decoction is often used to relieve symptoms of cold coagulation and blood stasis recorded by Treatise on Febrile Diseases (Shang Han Lun) and treat Raynaud's disease, dysmenorrhea, arthritis, migraine in TCM clinic. Accumulated evidences have suggested that this diseases are related to microcirculation disturbance. However, the anticoagulant activity and underlying mechanisms of DGSN decoction responsible for the therapeutic not well understood. AIM OF THE STUDY: The fingerprint and anticoagulant activity in vivo-in vitro of DGSN decoction were evaluated to strengthen the quality control and activity study of formulas. MATERIALS AND METHODS: The chemical components of DGSN decoction were analyzed by HPLC and its fingerprint similarity were evaluated by "Chinese Medicine Chromatographic Fingerprint Similarity Evaluation Software (2012 Edition)". The anticoagulant activity of DGSN decoction was assessed by measuring four coagulation factors (PT, TT, APTT, FIB) in vitro. Zebrafish thrombosis model induced by punatinib was established to evaluate the activity of improving microvascular hemodynamics in vivo. Quantitative real-time polymerase chain reaction (q-PCR) were adopted to compare the changes in the RNA expression levels of coagulation factor II (FII), VII (FVII), IX (FIX) and X (FX) in zebrafish thrombosis model. RESULTS: The fingerprint similarity evaluation method of DGSN decoction was established. The results showed that 18 samples had higher similarity (S1-S18 > 0.878). Pharmacodynamic results showed that DGSN decoction could extend PT, TT and APTT, and reduce FIB content in vitro. Meanwhile, it markedly enhanced the cardiac output and blood flow velocity at low dosage (500 µg mL-1) in vivo. q-PCR data demonstrated that DGSN decoction (500 µg mL-1) could downregulate the RNA expression of FII, FVII, FIX and FX. Interestingly, there were a bidirectional regulation of FII, FIX and FX in a certain concentration range. In general, DGSN decoction can significantly improve hemodynamics and downregulate coagulation factors, and the results were consistent both in vitro - in vivo. CONCLUSION: The fingerprint study provide a new perspective for improving the quality control of DGSN decoction. DGSN decoction possess anticoagulant activity by regulating multiple coagulation factors simultaneously. Thus, it has the potential to develop into the novel raw material of anticoagulant drugs.


Subject(s)
Angelica sinensis , Drugs, Chinese Herbal , Thrombosis , Female , Animals , Zebrafish , Blood Coagulation Factors , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Prothrombin , Thrombosis/drug therapy , RNA
15.
Ecol Evol ; 14(2): e10933, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38384821

ABSTRACT

A novel Eimeria sp. from a captive-bred bilby (Macrotis lagotis Reid, 1837) has been identified in Western Australia. The bilby was bred at the Kanyana Wildlife Rehabilitation Centre, Perth, as part of the National Bilby Recovery Plan. Oocysts (n = 31) irregular blunt ellipsoidal, 17-18 × 11-12 (17.2 × 11.3); length/width (L/W) ratio 1.4-1.5 (1.5). Wall bi-layered, 0.8-1.0 (0.9) thick, outer layer smooth, c.2/3 of total thickness. Micropyle barely discernible. Oocyst residuum is absent, but 2-3 small polar granules are present. Sporocysts (n = 31) ovoidal, 7-8 × 5-6 (7.8 × 5.7); L/W ratio 1.3-1.4 (1.4). Stieda, sub-Stieda and para-Stieda bodies absent or indiscernible; sporocyst residuum present, usually as an irregular body consisting of numerous granules that appear to be membrane-bound or sometimes diffuse among sporozoites. Sporozoites vermiform with a robust refractile body. Further molecular characterization was conducted on the sporulated oocysts. At the 18S locus, it sat in a large clade of the phylogenetic tree with two isolates of Eimeria angustus from quendas (Isoodon obesulus Shaw, 1797) and the Choleoeimeria spp. It shared the highest identity with E. angustus (KU248093) at 98.84%; at the COI gene locus, it was unique and most closely related to Choleoeimeria taggarti, which is hosted by another species of marsupial, the yellow-footed antechinus (Antechinus flavipes flavipes), with 90.58% genetic similarity. Based on morphological and molecular data, this isolate is a new species and named as Choleoeimeria yangi n. sp.

16.
Phytochemistry ; 219: 113994, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244959

ABSTRACT

Five undescribed compounds, including two cholestane glycosides parispolyosides A and E, and three spirostanol glycosides parispolyosides B-D, were isolated from rhizome of Paris polyphylla var. chinensis (Franch.) Hara, together with twenty-one known steroidal saponins. Their chemical structures were elucidated on the basis of comprehensive analysis of 1D and 2D NMR, as well as HR-ESI-MS spectroscopic data. Two of these compounds demonstrated potent inhibitory effect on NO production stimulated by lipopolysaccharide in raw 264.7 cells with IC50 values of 61.35 µM and 37.23 µM. Four compounds exhibited moderate inhibitory activity against HepG2 cells with IC50 values ranging from 9.43 to 24.54 µM. Molecular docking analysis revealed that the potential mechanism of NO inhibition by the active compounds was associated with the interactions with iNOS protein.


Subject(s)
Antineoplastic Agents , Liliaceae , Saponins , Rhizome/chemistry , Molecular Docking Simulation , Saponins/chemistry , Liliaceae/chemistry , Anti-Inflammatory Agents/pharmacology
17.
Int J Biol Macromol ; 254(Pt 3): 127971, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37944720

ABSTRACT

Developing efficient and safe antibacterial agents to inhibit pathogens including Physalospora piricola and Staphylococcus aureus is of great importance. Herein, a novel compound composed of Rosa roxburghii procyanidin, chitosan and selenium nanoparticle (RC-SeNP) was bio-synthesized, with the average diameter and zeta potential being 84.56 nm and -25.60 mV, respectively. The inhibition diameter of the RC-SeNP against P. piricola and S. aureus reached 18.67 mm and 13.13 mm, and the maximum scavenging activity against DPPH and ABTS reached 96.02% and 98.92%, respectively. Moreover, the RC-SeNP completely inhibited the propagation P. piricola and S. aureus on actual apples, suggesting excellent in vivo antimicrobial capacity. The transcriptome analysis and electron microscope observation indicated that the antibacterial activity would be attributed to adhering to and crack the cell walls as well as damage the cytomembrane and nucleus. Moreover, the RC-SeNP effectively maintained the vitamin C, total acid, and water contents of red bayberry, demonstrating potential application for fruit preservation. At last, the RC-SeNP showed no cell toxicity and trace selenium residual dose (0.03 mg/kg on apple, 0.12 mg/kg on red bayberry). This study would enlighten future development on novel nano-bioantibacterial agents for sustainable agriculture.


Subject(s)
Chitosan , Nanoparticles , Rosa , Selenium , Antioxidants/pharmacology , Antioxidants/chemistry , Selenium/chemistry , Chitosan/chemistry , Staphylococcus aureus , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology
18.
J Ethnopharmacol ; 321: 117505, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38016573

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hypaconitine (HA), a diterpenoid alkaloid, mainly derived from Aconitum plants such as Acoitum carmichaeli Debx. And Aconitum nagarum Stapf., has recently piqued significant interest among the scientific community given its multifaceted attributes including anti-inflammatory, anticancer, analgesic, and cardio-protective properties. AIM OF THE STUDY: This review presents a comprehensive exploration of the research advancements regarding the traditional uses, pharmacology, pharmacokinetics, toxicity, and toxicity reduction of HA. It aims to provide a thorough understanding of HA's multifaceted properties and its potential applications in various fields. MATERIALS AND METHODS: A systematic literature search was conducted using several prominent databases including PubMed, Web of Science, NCBI, and CNKI. The search was performed using specific keywords such as "hypaconitine," "heart failure," "anti-inflammatory," "aconite decoction," "pharmacological," "pharmacokinetics," "toxicity," "detoxification or toxicity reduction," and "extraction and isolation." The inclusion of these keywords ensured a comprehensive exploration of relevant studies and enabled the retrieval of valuable information pertaining to the various aspects of HA. RESULTS: Existing research has firmly established that HA possesses a range of pharmacological effects, encompassing anti-cardiac failure, anti-inflammatory, analgesic, and anti-tumor properties. The therapeutic potential of HA is promising, with potential applications in heart failure, ulcerative colitis, cancer, and other diseases. Pharmacokinetic studies suggest that HA exhibits high absorption rates, broad distribution, and rapid metabolism. However, toxic effects of HA on the nerves, heart, and embryos have also been observed. To mitigate these risks, HA needs attenuation before use, with the most common detoxification methods being processing and combined use with other drugs. Extraction methods for HA most commonly include cold maceration, soxhlet reflux extraction, and ultrasonic-assisted extraction. Despite the potential therapeutic benefits of HA, further research is warranted to elucidate its anti-heart failure effects, particularly in vivo, exploring aspects such as in vivo metabolism, distribution, and metabolites. Additionally, the therapeutic effects of HA monomers on inflammation-induced diseases and tumors should be validated in a more diverse range of experimental models, while the mechanisms underlying the therapeutic effects of HA should be investigated in greater detail. CONCLUSION: This review serves to emphasize the therapeutic potential of HA and highlights the crucial need to address its toxicity concerns before considering clinical application. Further research is required to comprehensively investigate the pharmacological properties of HA, with particular emphasis on its anti-cardiac failure and anti-inflammatory activities. Such research endeavors have the potential to unveil novel treatment avenues for a broad spectrum of diseases.


Subject(s)
Aconitum , Drugs, Chinese Herbal , Heart Failure , Humans , Drugs, Chinese Herbal/pharmacology , Anti-Inflammatory Agents , Analgesics
19.
ACS Appl Bio Mater ; 6(12): 5145-5168, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38032114

ABSTRACT

Tissue loss and end-stage organ failure are serious health problems across the world. Natural and synthetic polymer scaffold material based artificial organs play an important role in the field of tissue engineering and organ regeneration, but they are not from the body and may cause side effects such as rejection. In recent years, the biomimetic decellularized scaffold based materials have drawn great attention in the tissue engineering field for their good biocompatibility, easy modification, and excellent organism adaptability. Therefore, in this review, we comprehensively summarize the application of decellularized scaffolds in tissue engineering and biomedicine in recent years. The preparation methods, modification strategies, construction of artificial tissues, and application in biomedical applications are discussed. We hope that this review will provide a useful reference for research on decellularized scaffolds and promote their application tissue engineering.


Subject(s)
Biomimetic Materials , Tissue Scaffolds , Tissue Engineering , Regeneration
20.
Cell Biosci ; 13(1): 196, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37915036

ABSTRACT

The blood-brain barrier (BBB) serves as a defensive line protecting the central nervous system, while also maintaining micro-environment homeostasis and inhibiting harmful materials from the peripheral blood. However, the BBB's unique physiological functions and properties make drug delivery challenging for patients with central nervous system diseases. In this article, we briefly describe the cell structure basis and mechanism of action of the BBB, as well as related functional proteins involved. Additionally, we discuss the various mechanisms of BBB damage following the onset of an ischemic stroke, and lastly, we mention several therapeutic strategies accounting for impairment mechanisms. We hope to provide innovative ideas for drug delivery research via the BBB.

SELECTION OF CITATIONS
SEARCH DETAIL