Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 18(2): 282-292, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34918729

ABSTRACT

The swelling of univalent and multivalent charged polymeric networks in electrolytic solutions is studied using a classical thermodynamic model. Such systems were first modeled by Donnan, who derived an expression for the chemical potential of the ions by introducing an electric potential that is commonly referred to as the Donnan potential. This well-established theory leads to a simple quadratic relationship for the partitioning of ions between the network and the external solution. When the concentration of fixed charges in the swollen gel is large enough, the electrolyte in the external solution is "excluded" from the gel (commonly referred to as Donnan exclusion). In the standard Donnan theory, and in virtually all subsequent theories, the magnitude of Donnan exclusion decreases with increasing electrolyte concentration in the external solution. Our model predicts this is not necessarily true; we show that the magnitude of Donnan exclusion increases with increasing electrolyte concentration over a broad range of parameter space (average chain length between crosslinks, fraction of charged monomers in the network, the nature of the interactions between the ions, solvent molecules and polymer chains, and ion concentration in the external solution). We also present explicit bounds for the validity of Donnan's original theory. Model predictions are compared to simulations and experimental data obtained for a cationic gel immersed in electrolytic solutions of salts containing univalent and bivalent cations.

2.
Macromolecules ; 53(14)2020.
Article in English | MEDLINE | ID: mdl-33041373

ABSTRACT

This study shows that it is possible to obtain homogeneous mixtures of two chemically distinct polymers with a lithium salt for electrolytic applications. This approach is motivated by the success of using mixtures of organic solvents in modern lithium-ion batteries. The properties of mixtures of a polyether, poly(ethylene oxide) (PEO), a poly(ether-acetal), poly(1,3,6-trioxocane) (P(2EO-MO)), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt were studied by small-angle neutron scattering (SANS) and electrochemical characterization in symmetric cells. The SANS data are used to determine the miscibility window and quantify the effect of added salt on the thermodynamic interactions between the polymers. In the absence of salt, PEO/P(2EO-MO) blends are homogeneous and characterized by attractive interactions, i.e., a negative Flory-Huggins interaction parameter, χ. The addition of small amounts of salt results in a positive effective Flory-Huggins interaction parameter, χ eff, and macrophase separation. Surprisingly, miscible blends and negative χ eff parameters are obtained when the salt concentration is increased beyond a critical value. The electrochemical properties of PEO/P(2EO-MO)/LiTFSI blends at a given salt concentration were close to those obtained in PEO/LiTFSI electrolytes at the same salt concentration. This suggests that in the presence of PEO the electrochemical properties exhibited by P(2EO-MO) chains are similar to those of PEO chains. This work opens the door to a new direction for creating new and improved polymer electrolytes either by combining existing polymers and salt or by synthesizing new polymers with the specific aim of including them in miscible polymer blend electrolytes.

3.
ACS Macro Lett ; 9(5): 639-645, 2020 May 19.
Article in English | MEDLINE | ID: mdl-35648570

ABSTRACT

Polymer chain dynamics of a nanostructured block copolymer electrolyte, polystyrene-block-poly(ethylene oxide) (SEO) mixed with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, are investigated by neutron spin echo (NSE) spectroscopy on the 0.1-100 ns time scale and analyzed using the Rouse model at short times (t ≤ 10 ns) and the reptation tube model at long times (t ≥ 50 ns). In the Rouse regime, the monomeric friction coefficient increases with increasing salt concentration, as seen previously in homopolymer electrolytes. In the reptation regime, the tube diameters, which represent entanglement constraints, decrease with increasing salt concentration. The normalized longest molecular relaxation time, calculated from the NSE results, increases with increasing salt concentration. We argue that quantifying chain motion in the presence of ions is essential for predicting the behavior of polymer-electrolyte-based batteries operating at large currents.

SELECTION OF CITATIONS
SEARCH DETAIL
...