Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 898
Filter
1.
Sci Total Environ ; : 174345, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960174

ABSTRACT

Seaweed cultivation can inhibit the occurrence of red tides. However, how seaweed aquaculture interactions with harmful algal blooms will be affected by the increasing occurrence and intensity of marine heatwaves (MHWs) is unknown. In this study, we run both monoculture and coculture systems to investigate the effects of a simulated heatwave on the competition of the economically important macroalga Gracilariopsis lemaneiformis against the harmful bloom diatom Skeletonema costatum. Coculture with G. lemaneiformis led to a growth decrease in S. costatum. Growth and photosynthetic activity (Fv/Fm) of G. lemaneiformis was greatly reduced by the heatwave treatment, and did not recover even after one week. Growth and photosynthetic activity of S. costatum was also reduced by the heatwave in coculture, but returned to normal during the recovery period. S. costatum also responded to the stressful environment by forming aggregates. Metabolomic analysis suggests that the negative effects on S. costatum were related to an allelochemical release from G. lemaneiformis. These findings show that MHWs may enhance the competitive advantages of S. costatum against G. lemaneiformis, leading to more severe harmful algal blooms in future extreme weather scenarios.

2.
J Nanobiotechnology ; 22(1): 366, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918821

ABSTRACT

Locally advanced breast cancer (LABC) is a heterogeneous group of breast cancer that accounts for 10-30% of breast cancer cases. Despite the ongoing development of current treatment methods, LABC remains a severe and complex public health concern around the world, thus prompting the urgent requirement for innovative diagnosis and treatment strategies. The primary treatment challenges are inoperable clinical status and ineffective local control methods. With the rapid advancement of nanotechnology, inorganic nanoparticles (INPs) exhibit a potential application prospect in diagnosing and treating breast cancer. Due to the unique inherent characteristics of INPs, different functions can be performed via appropriate modifications and constructions, thus making them suitable for different imaging technology strategies and treatment schemes. INPs can improve the efficacy of conventional local radiotherapy treatment. In the face of inoperable LABC, INPs have proposed new local therapeutic methods and fostered the evolution of novel strategies such as photothermal and photodynamic therapy, magnetothermal therapy, sonodynamic therapy, and multifunctional inorganic nanoplatform. This article reviews the advances of INPs in local accurate imaging and breast cancer treatment and offers insights to overcome the existing clinical difficulties in LABC management.


Subject(s)
Breast Neoplasms , Humans , Breast Neoplasms/therapy , Female , Nanostructures/therapeutic use , Nanostructures/chemistry , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Animals , Photochemotherapy/methods , Inorganic Chemicals/chemistry
3.
J Control Release ; 371: 429-444, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849096

ABSTRACT

Protein-based nanoparticles have garnered significant attention in theranostic applications due to their superior biocompatibility, exceptional biodegradability and ease of functionality. Compared to other nanocarriers, protein-based nanoparticles offer additional advantages, including biofunctionality and precise molecular recognition abilities, which make them highly effective in navigating complex biological environments. Moreover, proteins can serve as powerful tools with self-assembling structures and reagents that enhance cell penetration. And their derivation from abundant renewable sources and ability to degrade into harmless amino acids further enhance their suitability for biomedical applications. However, protein-based nanoparticles have so far not realized their full potential. In this review, we summarize recent advances in the use of protein nanoparticles in tumor diagnosis and treatment and outline typical methods for preparing protein nanoparticles. The review of protein nanoparticles may provide useful new insights into the development of biomaterial fabrication.


Subject(s)
Drug Delivery Systems , Nanoparticles , Neoplasms , Proteins , Theranostic Nanomedicine , Humans , Neoplasms/drug therapy , Theranostic Nanomedicine/methods , Nanoparticles/chemistry , Animals , Proteins/administration & dosage , Proteins/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry
4.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892269

ABSTRACT

We aimed to determine whether monitoring tumor-derived exosomal microRNAs (miRNAs) could be used to assess radiotherapeutic sensitivity in patients with locally advanced esophageal squamous cell carcinoma (ESCC). RNA sequencing was employed to conduct a comparative analysis of miRNA expression levels during radiotherapy, focusing on identifying miRNAs associated with progression. Electron microscopy confirmed the existence of exosomes, and co-cultivation assays and immunofluorescence validated their capacity to infiltrate macrophages. To determine the mechanism by which exosomal miR-143-3p regulates the interplay between ESCC cells and M2 macrophages, ESCC cell-derived exosomes were co-cultured with macrophages. Serum miR-143-3p and miR-223-3p were elevated during radiotherapy, suggesting resistance to radiation and an unfavorable prognosis for ESCC. Increased levels of both miRNAs independently predicted shorter progression-free survival (p = 0.015). We developed a diagnostic model for ESCC using serum microRNAs, resulting in an area under the curve of 0.751. Radiotherapy enhanced the release of miR-143-3p from ESCC cell-derived exosomes. Immune cell infiltration analysis at the Cancer Genome Atlas (TCGA) database revealed that ESCC cell-derived miR-143-3p triggered M2 macrophage polarization. Mechanistically, miR-143-3p upregulation affected chemokine activity and cytokine signaling pathways. Furthermore, ESCC cell exosomal miR-143-3p could be transferred to macrophages, thereby promoting their polarization. Serum miR-143-3p and miR-223-3p could represent diagnostic and prognostic markers for patients with ESCC undergoing radiotherapy. Unfavorable prognosis could be linked to the increased levels of ESCC cell-derived exosomal miR-143-3p, which might promote tumor progression by interacting with macrophages.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Exosomes , Gene Expression Regulation, Neoplastic , Macrophages , MicroRNAs , Radiation Tolerance , MicroRNAs/genetics , Humans , Exosomes/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/radiotherapy , Esophageal Squamous Cell Carcinoma/metabolism , Macrophages/metabolism , Radiation Tolerance/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/radiotherapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Cell Line, Tumor , Male , Female , Middle Aged , Prognosis , Aged , Macrophage Activation/genetics
5.
Environ Toxicol ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899512

ABSTRACT

Despite recent advances in treatment, non-small cell lung cancer (NSCLC) continues to have a high mortality rate. Currently, NSCLC pathogenesis requires further investigation, and therapeutic drugs are still under development. Homologous recombination repair (HRR) repairs severe DNA double-strand breaks. Homologous recombination repair deficiency (HRD) occurs when HRR is impaired and causes irreparable double-strand DNA damage, leading to genomic instability and increasing the risk of cancer development. Poly(ADP-ribose) polymerase (PARP) inhibitors can effectively treat HRD-positive tumors. Extracellular heat shock protein 90α (eHSP90α) is highly expressed in hypoxic environments and inhibits apoptosis, thereby increasing cellular tolerance. Here, we investigated the relationship between eHSP90α and HRR in NSCLC. DNA damage models were established in NSCLC cell lines (A549 and H1299). The activation of DNA damage and HRR markers, apoptosis, proliferation, and migration were investigated. In vivo tumor models were established using BALB/c nude mice and A549 cells. We found that human recombinant HSP90α stimulation further activated HRR and reduced DNA damage extent; however, eHSP90α monoclonal antibody, 1G6-D7, effectively inhibited HRR. HRR inhibition and increased apoptosis were observed after LRP1 knockdown; this effect could not be reversed with hrHSP90α addition. The combined use of 1G6-D7 and olaparib caused significant apoptosis and HRR inhibition in vitro and demonstrated promising anti-tumor effects in vivo. Extracellular HSP90α may be involved in HRR in NSCLC through LRP1. The combined use of 1G6-D7 and PARP inhibitors may exert anti-tumor effects by inhibiting DNA repair and further inducing apoptosis of NSCLC cells.

6.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(3): 237-244, 2024 May 30.
Article in Chinese | MEDLINE | ID: mdl-38863087

ABSTRACT

Additive manufacturing (3D printing) technology aligns with the direction of precision and customization in future medicine, presenting a significant opportunity for innovative development in high-end medical devices. Currently, research and industrialization of 3D printed medical devices mainly focus on nondegradable implants and degradable implants. Primary areas including metallic orthopaedic implants, polyether-ether-ketone (PEEK) bone implants, and biodegradable implants have been developed for clinical and industrial application. Recent research achievements in these areas are reviewed, with a discussion on the additive manufacturing technologies and applications for customized implants. Challenges faced by different types of implants are analyzed from technological, application, and regulatory perspectives. Furthermore, prospects and suggestions for future development are outlined.


Subject(s)
Printing, Three-Dimensional , Prostheses and Implants , Benzophenones , Polymers , Humans , Ketones , Prosthesis Design , Biocompatible Materials , Polyethylene Glycols , Absorbable Implants
7.
Respir Care ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866418

ABSTRACT

BACKGROUND: The flow reaching the vocal folds may be lower than that at the output of high-flow nasal cannula (HFNC) system. This could be due to upper-respiratory obstruction, oxygen leakage, or other factors. The objective of this study was to observe the effect of flow through a nasopharyngeal airway on intrapharyngeal pressure (IPP) in subjects undergoing fiberoptic bronchoscopy (FOB). METHODS: Patients scheduled for FOB were invited to participate. Measurements were performed at flows of 0-60 L/min; the subjects wore WN-N95 folding medical protective masks (N95) and either underwent FOB or not. IPP at each flow was recorded following 15 s of ventilation, and the cross-sectional area (CSA) of the gastric sinus was measured before and after FOB. Hypoxemia, reflux aspiration, and other pertinent events were recorded. RESULTS: Sixty subjects undergoing FOB at the Affiliated Hospital of Jiaxing University participated in this trial from October 2022-September 2023. IPP increased significantly with an increase in flow and also increased after placing the N95 mask with the same flow (P < .001). When results from before to after FOB were compared, the difference in CSA was statistically significant 263.6 (220.7-300.5) mm2 vs 305.5 (275.4-329.5) mm2, P < .001, but the difference in the risk of reflux aspiration was not statistically significant (0% vs 6.7%, P = .13). Complication rates during treatment were 8.3% for hypoxemia, 0% for reflux aspiration, 1.7% for hypertension, 1.7% for hypotension, 6.7% for tachycardia, 5% for bradycardia, and 10% for postoperative nausea and vomiting. CONCLUSIONS: HFNC can provide effective oxygen therapy for people undergoing FOB, and increases in IPP with flow in the range of 0-60 L/min may not increase the risk of reflux aspiration.

8.
J Cosmet Dermatol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923267

ABSTRACT

BACKGROUND: Ultrapluse CO2 fractional laser technology has emerged as an effective treatment for scar management. However, one drawback of this modality is the pain caused during the procedure. This study aims to explore the efficacy and safety of dezocine (DZC) as preemptive analgesia for reduction of pain induced by ultrapulse CO2 fractional laser treatment for acne scars. METHODS: The study cohort included 78 outpatients with acne scars between February and April 2023. Patients were randomly assigned into three groups with intravenous injection (iv) of DZC prior to laser treatment: (1) control, iv of saline; (2) DZC group 1 (DZC_1), iv of DZC at 0.15 mg/kg; and (3) DZC_2, iv of DZC at 0.20 mg/kg. After 30 min, one session of ultrapulse CO2 fractional laser treatment on acne scars was performed. Hemodynamics, visual analogue scale (VAS), and anxiety visual analog test (AVAT) were monitored prior to, during, and after the procedure. RESULTS: Operative success rates for patients in the control, DZC_1, and DZC_2 groups were 34.6%, 84.6%, and 100%, respectively. DZC administered with either dosage significantly reduced the VAS and AVAT scores of patients in treatment groups as compared with the subjects in the control group during the course of ultrapulse CO2 fractional laser treatment. Patients in DZC_1 and DZC_2 groups did not show any significant difference in hemodynamic parameters, VAS, and AVAT scores. Temporary adverse effects such as nausea and dizziness were observed in some subjects after treatment; the symptoms were quickly dissolved after a rest in supine position. CONCLUSIONS: DZC as preemptive analgesia could effectively reduce pain and anxiety induced by ultrapulse CO2 fractional laser treatment in patients. This study provided an option of preemptive anesthesia to minimize the pain and discomforts associated with laser treatments in clinical practices.

9.
Brain Behav ; 14(7): e3610, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38945806

ABSTRACT

INTRODUCTION: Pregnant women may need to undergo non-obstetric surgery under general anesthesia owing to medical needs, and pregnant women frequently experience sleep disturbances during late gestation. Preclinical studies demonstrated that maternal isoflurane exposure (MISO) or maternal sleep deprivation (MSD) contributed to cognitive impairments in offspring. Research studies in mice have revealed that SD can aggravate isoflurane-induced cognitive deficits. However, it remains unclear whether MSD aggravates MISO-induced cognitive deficits in offspring. The purpose of this research was to explore the combined effects of MSD and MISO on offspring cognitive function and the role of neuroinflammation and synaptic function in the process of MSD + MISO. METHODS: Pregnant mice were exposed to 1.4% isoflurane by inhalation for 4 h on gestational day (GD) 14. Dams were then subjected to SD for 6 h (12:00-18:00 h) during GD15-21. At 3 months of age, the offspring mice were subjected to the Morris water maze test to assess cognitive function. Then the levels of inflammatory and anti-inflammatory markers and synaptic function-related proteins were assessed using molecular biology methods. RESULTS: The results of this study demonstrated that MISO led to cognitive dysfunction, an effect that was aggravated by MSD. In addition, MSD exacerbated the maternal isoflurane inhalation, leading to an enhancement in the expression levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha and a reduction in the hippocampal levels of IL-10, synaptophysin, post-synaptic density-95, growth-associated protein-43, and brain-derived neurotrophic factor. CONCLUSION: Our findings revealed that MSD aggravated the cognitive deficits induced by MISO in male offspring mice, and these results were associated with neuroinflammation and alternations in synaptic function.


Subject(s)
Anesthetics, Inhalation , Cognitive Dysfunction , Hippocampus , Isoflurane , Neuroinflammatory Diseases , Prenatal Exposure Delayed Effects , Sleep Deprivation , Animals , Isoflurane/adverse effects , Isoflurane/pharmacology , Isoflurane/administration & dosage , Female , Cognitive Dysfunction/etiology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/physiopathology , Pregnancy , Sleep Deprivation/complications , Sleep Deprivation/physiopathology , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Prenatal Exposure Delayed Effects/physiopathology , Anesthetics, Inhalation/adverse effects , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/administration & dosage , Synapses/drug effects , Male , Mice, Inbred C57BL , Maternal Deprivation , Brain-Derived Neurotrophic Factor/metabolism
10.
Cell Commun Signal ; 22(1): 339, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898473

ABSTRACT

BACKGROUND: Endocrine resistance driven by sustained activation of androgen receptor (AR) signaling pathway in advanced prostate cancer (PCa) is fatal. Characterization of mechanisms underlying aberrant AR pathway activation to search for potential therapeutic strategy is particularly important. Rac GTPase-activating protein 1 (RACGAP1) is one of the specific GTPase-activating proteins. As a novel tumor proto-oncogene, overexpression of RACGAP1 was related to the occurrence of various tumors. METHODS: Bioinformatics methods were used to analyze the relationship of expression level between RACGAP1 and AR as well as AR pathway activation. qRT-PCR and western blotting assays were performed to assess the expression of AR/AR-V7 and RACGAP1 in PCa cells. Immunoprecipitation and immunofluorescence experiments were conducted to detect the interaction and co-localization between RACGAP1 and AR/AR-V7. Gain- and loss-of-function analyses were conducted to investigate the biological roles of RACGAP1 in PCa cells, using MTS and colony formation assays. In vivo experiments were conducted to evaluate the effect of RACGAP1 inhibition on the tumor growth. RESULTS: RACGAP1 was a gene activated by AR, which was markedly upregulated in PCa patients with CRPC and enzalutamide resistance. AR transcriptionally activated RACGAP1 expression by binding to its promoter region. Reciprocally, nuclear RACGAP1 bound to the N-terminal domain (NTD) of both AR and AR-V7, blocking their interaction with the E3 ubiquitin ligase MDM2. Consequently, this prevented the degradation of AR/AR-V7 in a ubiquitin-proteasome-dependent pathway. Notably, the positive feedback loop between RACGAP1 and AR/AR-V7 contributed to endocrine therapy resistance of CRPC. Combination of enzalutamide and in vivo cholesterol-conjugated RIG-I siRNA drugs targeting RACGAP1 induced potent inhibition of xenograft tumor growth of PCa. CONCLUSION: In summary, our results reveal that reciprocal regulation between RACGAP1 and AR/AR-V7 contributes to the endocrine resistance in PCa. These findings highlight the therapeutic potential of combined RACGAP1 inhibition and enzalutamide in treatment of advanced PCa.


Subject(s)
Drug Resistance, Neoplasm , GTPase-Activating Proteins , Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Animals , Proto-Oncogene Mas , Gene Expression Regulation, Neoplastic/drug effects , Phenylthiohydantoin/pharmacology , Mice, Nude , Nitriles/pharmacology , Mice , Benzamides/pharmacology , Cell Proliferation/drug effects , Cell Proliferation/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
11.
J Neurovirol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926255

ABSTRACT

Caffeine is one of the most popular consumed psychostimulants that mitigates several neurodegenerative diseases. Nevertheless, the roles and molecular mechanisms of caffeine in HIV-associated neurocognitive disorders (HAND) remain largely unclear. Transactivator of transcription (Tat) is a major contributor to the neuropathogenesis of HAND in the central nervous system. In the present study, we determined that caffeine (100 µM) treatment significantly ameliorated Tat-induced decreased astrocytic viability, oxidative stress, inflammatory response and excessive glutamate and ATP release, thereby protecting neurons from apoptosis. Subsequently, SIRT3 was demonstrated to display neuroprotective effects against Tat during caffeine treatment. In addition, Tat downregulated SIRT3 expression via activation of EGR1 signaling, which was reversed by caffeine treatment in astrocytes. Overexpression of EGR1 entirely abolished the neuroprotective effects of caffeine against Tat. Furthermore, counteracting Tat or caffeine-induced differential expression of SIRT3 abrogated the neuroprotection of caffeine against Tat-triggered astrocytic dysfunction and neuronal apoptosis. Taken together, our study establishes that caffeine ameliorates astrocytes-mediated Tat neurotoxicity by targeting EGR1/SIRT3 signaling pathway. Our findings highlight the beneficial effects of caffeine on Tat-induced astrocytic dysfunction and neuronal death and propose that caffeine might be a novel therapeutic drug for relief of HAND.

13.
Yi Chuan ; 46(5): 421-430, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763776

ABSTRACT

Inner Mongolia cashmere goat is an excellent livestock breed formed through long-term natural selection and artificial breeding, and is currently a world-class dual-purpose breed producing cashmere and meat. Multi trait animal model is considered to significantly improve the accuracy of genetic evaluation in livestock and poultry, enabling indirect selection between traits. In this study, the pedigree, genotype, environment, and phenotypic records of early growth traits of Inner Mongolia cashmere goats were used to build multi trait animal model., Then three methods including ABLUP, GBLUP, and ssGBLUP wereused to estimate the genetic parameters and genomic breeding values of early growth traits (birth weight, weaning weight, average daily weight gain before weaning, and yearling weight). The accuracy and reliability of genomic estimated breeding value are further evaluated using the five fold cross validation method. The results showed that the heritability of birth weight estimated by three methods was 0.13-0.15, the heritability of weaning weight was 0.13-0.20, heritability of daily weight gain before weaning was 0.11-0.14, and the heritability of yearling weight was 0.09-0.14, all of which belonged to moderate to low heritability. There is a strong positive genetic correlation between weaning weight and daily weight gain before weaning, daily weight gain before weaning and yearling weight, with correlation coefficients of 0.77-0.79 and 0.56-0.67, respectively. The same pattern was found in phenotype correlation among traits. The accuracy of the estimated breeding values by ABLUP, GBLUP, and ssGBLUP methods for birth weight is 0.5047, 0.6694, and 0.7156, respectively; the weaning weight is 0.6207, 0.6456, and 0.7254, respectively; the daily weight gain before weaning was 0.6110, 0.6855, and 0.7357 respectively; and the yearling weight was 0.6209, 0.7155, and 0.7756, respectively. In summary, the early growth traits of Inner Mongolia cashmere goats belong to moderate to low heritability, and the speed of genetic improvement is relatively slow. The genetic improvement of other growth traits can be achieved through the selection of weaning weight. The ssGBLUP method has the highest accuracy and reliability in estimating genomic breeding value of early growth traits in Inner Mongolia cashmere goats, and is significantly higher than that from ABLUP method, indicating that it is the best method for genomic breeding of early growth weight in Inner Mongolia cashmere goats.


Subject(s)
Breeding , Goats , Animals , Goats/genetics , Goats/growth & development , Phenotype , Genomics/methods , Female , Male , Birth Weight/genetics , Models, Genetic
14.
J Dent ; 147: 105043, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735469

ABSTRACT

OBJECTIVES: Three-dimensional (3D) facial symmetry analysis is based on the 3D symmetry reference plane (SRP). Artificial intelligence (AI) is widely used in the dental and oral sciences. This study developed a novel deep learning model called the facial planar reflective symmetry net (FPRS-Net) to automatically construct an SRP and established a method for defining a 3D point-cloud region of interest (ROI) and high-dimensional feature computations suitable for this network model. METHODS: Overall, 240 patients were enroled. The deep learning model was trained and predicted using 200 samples, and its clinical suitability was evaluated with 40 samples. Four FPRS-Net models were prepared, each using supervised and unsupervised learning approaches based on full facial and ROI data (FPRS-NetS, FPRS-NetSR, FPRS-NetU, and FPRS-NetUR). These models were trained on 160 3D facial datasets, validated on 20 cases, and tested on another 20 cases. The model predictions were evaluated using an additional 40 clinical 3D facial datasets by comparing the mean square error of the SRP between the parameters predicted by the four FPRS-Net models and the truth plane. The clinical suitability of FPRS-Net models was evaluated by measuring the angle error between the predicted and ground-truth planes; experts evaluated the predicted SRP of the four FPRS-Net models using the visual analogue scales (VAS) method. RESULTS: The FPRS-NetSR and FPRS-NetU models achieved an average angle error of 0.84° and 0.99° in predicting 3D facial SRP, respectively, with a VAS value of >8. Using the four FPRS-Net models to create an SRP in 40 cases of 3D facial data required <4 s. CONCLUSIONS: Our study demonstrated a new solution for automatically constructing oral clinical 3D facial SRPs. CLINICAL SIGNIFICANCE: This study proposes a novel deep learning algorithm (FPRS-Net) to construct a symmetry reference plane that can reduce workload, shorten the time required for digital design, reduce dependence on expert experience, and improve therapeutic efficiency and effectiveness in dental clinics.

15.
Adv Mater ; : e2312918, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821561

ABSTRACT

The intercalation of layered materials offers a flexible approach for tailoring their structures and generating unexpected properties. This review provides perspectives on the chemical intercalation of layered materials, including graphite/graphene, transition metal dichalcogenides, MXenes, and some particular materials. The characteristics of the different intercalation methods and their chemical mechanisms are discussed. The influence of intercalation on the structural changes of the host materials and the structural change how to affect the intrinsic properties of the intercalation compounds are discussed. Furthermore, a perspective on the applications of intercalation compounds in fields such as energy conversion and storage, catalysis, smart devices, biomedical applications, and environmental remediation is provided. Finally, brief insights into the challenges and future opportunities for the chemical intercalation of layered materials are provided.

16.
Zool Res ; 45(3): 679-690, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766749

ABSTRACT

General anesthesia is widely applied in clinical practice. However, the precise mechanism of loss of consciousness induced by general anesthetics remains unknown. Here, we measured the dynamics of five neurotransmitters, including γ-aminobutyric acid, glutamate, norepinephrine, acetylcholine, and dopamine, in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through in vivo fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective. Results revealed that the concentrations of γ-aminobutyric acid, glutamate, norepinephrine, and acetylcholine increased in the cortex during propofol-induced loss of consciousness. Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia. Notably, the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness. Furthermore, the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups. These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.


Subject(s)
Anesthetics, Inhalation , Mice, Inbred C57BL , Neurotransmitter Agents , Propofol , Sevoflurane , Sevoflurane/pharmacology , Animals , Propofol/pharmacology , Neurotransmitter Agents/metabolism , Mice , Anesthetics, Inhalation/pharmacology , Anesthetics, Intravenous/pharmacology , Male , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism
17.
Proc Natl Acad Sci U S A ; 121(22): e2402764121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771879

ABSTRACT

Staphylococcus aureus (S. aureus) can evade antibiotics and host immune defenses by persisting within infected cells. Here, we demonstrate that in infected host cells, S. aureus type VII secretion system (T7SS) extracellular protein B (EsxB) interacts with the stimulator of interferon genes (STING) protein and suppresses the inflammatory defense mechanism of macrophages during early infection. The binding of EsxB with STING disrupts the K48-linked ubiquitination of EsxB at lysine 33, thereby preventing EsxB degradation. Furthermore, EsxB-STING binding appears to interrupt the interaction of 2 vital regulatory proteins with STING: aspartate-histidine-histidine-cysteine domain-containing protein 3 (DHHC3) and TNF receptor-associated factor 6. This persistent dual suppression of STING interactions deregulates intracellular proinflammatory pathways in macrophages, inhibiting STING's palmitoylation at cysteine 91 and its K63-linked ubiquitination at lysine 83. These findings uncover an immune-evasion mechanism by S. aureus T7SS during intracellular macrophage infection, which has implications for developing effective immunomodulators to combat S. aureus infections.


Subject(s)
Bacterial Proteins , Macrophages , Membrane Proteins , Staphylococcal Infections , Staphylococcus aureus , Type VII Secretion Systems , Ubiquitination , Staphylococcus aureus/immunology , Membrane Proteins/metabolism , Membrane Proteins/immunology , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Animals , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Infections/metabolism , Type VII Secretion Systems/metabolism , Type VII Secretion Systems/immunology , Type VII Secretion Systems/genetics , Mice , Immune Evasion , Host-Pathogen Interactions/immunology
18.
Adv Sci (Weinh) ; : e2306770, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711214

ABSTRACT

Integrating multiple single-cell datasets is essential for the comprehensive understanding of cell heterogeneity. Batch effect is the undesired systematic variations among technologies or experimental laboratories that distort biological signals and hinder the integration of single-cell datasets. However, existing methods typically rely on a selected dataset as a reference, leading to inconsistent integration performance using different references, or embed cells into uninterpretable low-dimensional feature space. To overcome these limitations, a reference-free method, Beaconet, for integrating multiple single-cell transcriptomic datasets in original molecular space by aligning the global distribution of each batch using an adversarial correction network is presented. Through extensive comparisons with 13 state-of-the-art methods, it is demonstrated that Beaconet can effectively remove batch effect while preserving biological variations and is superior to existing unsupervised methods using all possible references in overall performance. Furthermore, Beaconet performs integration in the original molecular feature space, enabling the characterization of cell types and downstream differential expression analysis directly using integrated data with gene-expression features. Additionally, when applying to large-scale atlas data integration, Beaconet shows notable advantages in both time- and space-efficiencies. In summary, Beaconet serves as an effective and efficient batch effect removal tool that can facilitate the integration of single-cell datasets in a reference-free and molecular feature-preserved mode.

19.
Sci Rep ; 14(1): 10917, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740977

ABSTRACT

In a coal mine, air leakage exists in some roadways through doors and other ventilation structures inevitably. Based on this opinion, there are different views on whether these roadways must be assigned airflow in coal mine ventilation design. This paper analyses some relevant regulations and criteria on the designed air quantity of coal mines. Then, based on the ventilation design of the Guizhou Yizhong Coal Mine, through the study of the calculation of needed air quantity of every working place and its distribution method in coal mine ventilation design, this paper puts forward that explosion-proof door, safety exit, and other short distance roadways with ventilation structures need not assign airflow in coal mine ventilation design, while some long-distance roadways need. Additionally, it presents the main reason to support this opinion, gives the distribution method of inner air leakage quantity, which comes with the calculation of the designed mine total air quantity, puts forward the remedy method for the air leakage through ventilation structures in a coal mine ventilation system, then offers the mine operator with the basic opinions for the day-to-day planning and effective operation of a coal mine ventilation system.

SELECTION OF CITATIONS
SEARCH DETAIL
...