Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(11): 7868-7876, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38440979

ABSTRACT

Diodes based on p-n junctions are fundamental building blocks for numerous circuits, including rectifiers, photovoltaic cells, light-emitting diodes (LEDs), and photodetectors. However, conventional doping techniques to form p- or n-type semiconductors introduce impurities that lead to Coulomb scattering. When it comes to low-dimensional materials, controllable and stable doping is challenging due to the feature of atomic thickness. Here, by selectively depositing dielectric layers of Y2O3 and AlN, direct formation of wafer-scale carbon-nanotube (CNT) diodes are demonstrated with high yield and spatial controllability. It is found that the oxygen interstitials in Y2O3, and the oxygen vacancy together with Al-Al bond in AlN/Y2O3 electrostatically modulate the intrinsic CNTs channel, which leads to p- and n-type conductance, respectively. These CNTs diodes exhibit a high rectification ratio (>104) and gate-tunable rectification behavior. Based on these results, we demonstrate the applicability of the diodes in electrostatic discharge (ESD) protection and photodetection.

2.
Mater Horiz ; 10(11): 5185-5191, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37724683

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) have been attracting extensive attention due to their excellent properties. We have developed a strategy of using coal to synthesize SWCNTs for high performance field-effect transistors (FETs). The high-quality SWCNTs were synthesized by laser ablation using only coal as the carbon source and Co-Ni as the catalyst. We show that coal is a carbon source superior to graphite with higher yield and better selectivity toward SWCNTs with smaller diameters. Without any pre-purification, the as-prepared SWCNTs were directly sorted based on their conductivity and diameter using either aqueous two-phase extraction or organic phase extraction with PCz (poly[9-(1-octylonoyl)-9H-carbazole-2,7-diyl]). The semiconducting SWCNTs sorted by one-step PCz extraction were used to fabricate thin film FETs. The transformation of coal into FETs (and further integrated circuits) demonstrates an efficient way of utilizing natural resources and a marvelous example in green carbon technology. Considering its short steps and high feasibility, it presents great potential in future practical applications not limited to electronics.

3.
Nano Lett ; 23(2): 523-532, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36622363

ABSTRACT

Ultralong carbon nanotubes (CNTs) are in huge demand in many cutting-edge fields due to their macroscale lengths, perfect structures, and extraordinary properties, while their practical application is limited by the difficulties in their mass production. Herein, we report the synthesis of ultralong CNTs with a dramatically increased yield by a simple but efficient substrate interception and direction strategy (SIDS), which couples the advantages of floating-catalyst chemical vapor deposition with the flying-kite-like growth mechanism of ultralong CNTs. The SIDS-assisted approach prominently improves the catalyst utilization and significantly increases the yield. The areal density of the ultralong CNT arrays with length of over 1 cm reached a record-breaking value of ∼6700 CNTs mm-1, which is 2-3 orders of magnitude higher than the previously reported values obtained by traditional methods. The SIDS provides a solution for synthesizing high-quality ultralong CNTs with high yields, laying the foundation for their mass production.

SELECTION OF CITATIONS
SEARCH DETAIL
...