Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
1.
Neuroscience ; 556: 25-30, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094819

ABSTRACT

Cancer and depression are closely interrelated, particularly in patients with advanced cancer, who often present with comorbid anxiety and depression for various reasons. Recently, there has been a growing interest in the study of depression in cancer patients, with the aim of assessing the possible triggers, predictors, adverse events, and possible treatment options for depression in several common cancers. The objective of this narrative review is to synthesize the extant literature on the relationship between the occurrence and progression of depression in several common patient categories. The authors conducted a comprehensive review of 75 articles published in PubMed over the past five years. This review was further evaluated in the present paper. Ultimately, it was determined that depression is a prevalent and detrimental phenomenon among cancer patients, particularly those with advanced disease. Consequently, there is a pressing need to prioritize research and interventions aimed at improving the quality of life and psychosocial well-being of cancer patients, including those with advanced disease. The relationship between cancer and depression has been evolving dynamically in recent times. The current research findings indicate a strong association between cancer and depression. However, the direction of causality remains unclear. Focusing on depression in cancer patients may, therefore, be beneficial for these patients.

2.
Environ Pollut ; 359: 124738, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147223

ABSTRACT

Air quality in China has significantly improved owing to the effective implementation of pollution control measures. However, mutation events caused by short-term spikes in PM2.5 in urban agglomeration regions continue to occur frequently. Identifying the spatial sources and influencing factors, as well as improving the prediction accuracy of high PM2.5 during mutation events, are crucial for public health. In this study, we firstly introduced discrete wavelet transform (DWT) to identify the mutation events with high PM2.5 concentration in the four key urban agglomerations, and evaluated the spatial sources for the polluted scenario using Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Additionally, DWT was combined with a widely used artificial neural network (ANN) to improve the prediction accuracy of PM2.5 concentration seven days in advance (seven-day forecast). Results indicated that mutation events commonly occurred in the northern regions during winter time, which were under the control of both short-range transportation of dirty airmass as well as negative meteorology conditions. Compared with the ANN model alone, the average band errors decreased by 9% when using DWT-ANN model. The average correlation coefficient (R) and root mean square error (RMSE) obtained using the DWT-ANN improved by 10% and 12% compared to those obtained using the ANN, indicating the efficiency and accuracy of simulating PM2.5, by combining the DWT and ANN. The short-term mortality during mutation events was then calculated, with the total averted all-cause, cardiovascular, and respiratory deaths in the four regions, being 4751, 2554, and 582 persons, respectively. A declining trend in prevented deaths from 2018 to 2020 demonstrated that the pollution intensity during mutation events gradually decreased owing to the implementation of the Three-Year Action Plan to Win the Blue Sky Defense War. The method proposed in this study can be used by policymakers to take preventive measures in response to a sudden increase in PM2.5, thereby ensuring public health.

3.
Environ Sci Technol ; 58(33): 14662-14674, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39109806

ABSTRACT

Efforts to stabilize the global climate change while also continuing human development depend upon "decoupling" economic growth from fossil fuel CO2 emissions. However, evaluations of such decoupling have typically relied on production-based emissions, which do not account for emissions embodied in international trade. Yet international trade can greatly change emissions accounting and reshape the decoupling between emissions and economic growth. Here, we evaluate decoupling of economic growth from different accounts of emissions in each of the 159 countries and analyze the drivers of decoupling. We find that between 1995 and 2015, although 29 countries exhibited strong decoupling of territorial emissions (growing economies and decreasing emissions), only 19 countries achieved economic growth while their consumption-based emissions decreased. Most developed countries have achieved decoupling of emissions related to domestic goods and services, but have not achieved decoupling of emissions related to imported goods and services. The U-test confirms that the domestic component of consumption-based emissions exhibits a stronger decoupling trend from gross domestic product (GDP) growth than consumption-based emissions, and emissions from imports continue to rise with GDP per capita without a corresponding decline, providing a statistical validation of the decoupling analysis. Moreover, in the countries where economic growth and consumption-based emissions are most decoupled, a key driver is decreasing emissions intensity due to technological progress─and especially reductions in the intensity of imported goods and services. Our results reveal the importance of assessing decoupling using consumption-based emissions; successful decoupling may require international cooperation and coordinated mitigation efforts of trading partners.


Subject(s)
Economic Development , Commerce , Gross Domestic Product , Climate Change , Carbon Dioxide/analysis , Humans , Fossil Fuels
4.
Angew Chem Int Ed Engl ; : e202412409, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150416

ABSTRACT

The electron extraction from perovskite/C60 interface plays a crucial role in influencing the photovoltaic performance of inverted perovskite solar cells (PSCs). Here, we develop a one-stone-for-three-birds strategy via employing a novel fullerene derivative bearing triple methyl acrylate groups (denoted as C60-TMA) as a multifunctional interfacial layer to optimize electron extraction at the perovskite/C60 interface. It is found that the C60-TMA not only passivates surface defects of perovskite via coordination interactions between C=O groups and Pb2+ cations but also bridge electron transfer between perovskite and C60. Moreover, it effectively induces the secondary grain growth of the perovskite film through strong bonding effect, and this phenomenon has never been observed in prior art reports on fullerene related studies. The combination of the above three upgrades enables improved perovskite film quality with increased grain size and enhanced crystallinity. With these advantages, C60-TMA treated PSC devices exhibit a much higher power conversion efficiency (PCE) of 24.89% than the control devices (23.66%). Besides, C60-TMA benefits improved thermal stability of PSC devices, retaining over 90% of its initial efficiency after aging at 85 °C for 1200 h, primarily due to the reinforced interfacial interactions and improved perovskite film quality.

5.
J Environ Manage ; 365: 121649, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955049

ABSTRACT

In recent years, China has adopted numerous policies and regulations to control NOx emissions to further alleviate the adverse impacts of NO3--N deposition. However, the variation in wet NO3--N deposition under such policies is not clear. In this study, the southeastern area, with highly developed industries and traditional agriculture, was selected to explore the variation in NO3--N deposition and its sources changes after such air pollution control through field observation and isotope tracing. Results showed that the annual mean concentrations of NO3--N in precipitation were 0.67 mg L-1 and 0.54 mg L-1 in 2014-2015 and 2021-2022, respectively. The average wet NO3--N depositions in 2014-2015 and 2021-2022 was 7.76 kg N ha-1 yr-1 and 5.03 kg N ha-1 yr-1, respectively, indicating a 35% decrease. The δ15N-NO3- and δ18O-NO3- values were lower in warm seasons and higher in cold seasons, and both showed a lower trend in 2021-2022 compared with 2014-2015. The Bayesian model results showed that the NOx emitted from coal-powered plants contributed 53.6% to wet NO3--N deposition, followed by vehicle exhaust (22.9%), other sources (17.1%), and soil emissions (6.4%) during 2014-2015. However, the contribution of vehicle exhaust (33.3%) overpassed the coal combustion (32.3%) and followed by other sources (25.4%) and soil emissions (9.0%) in 2021-2022. Apart from the control of air pollution, meteorological factors such as temperature, precipitation, and solar radiation are closely related to the changes in atmospheric N transformation and deposition. The results suggest phased achievements in air pollution control and that more attention should be paid to the control of motor vehicle exhaust pollution in the future, at the same time maintaining current actions and supervision of coal-powered plants.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Nitrates , China , Air Pollution/analysis , Air Pollutants/analysis , Nitrates/analysis , Bayes Theorem , Seasons
6.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3608-3618, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041133

ABSTRACT

Premenstrual syndrome(PMS) lacks a highly consistent and feasible animal model that aligns with diagnostic and therapeutic standards in both traditional Chinese medicine(TCM) and western medicine, resulting in a lack of reliable experimental carriers for studying its pathogenesis and pharmacological effects. This study aims to systematically analyze the biological implications of PMS from the perspective of the "disease-syndrome-symptom" correlation and establish preparation and evaluation methods for an improved animal model of this disease. Firstly, clinical symptom gene sets related to the Qi stagnation syndromes due to liver depression and blood stasis in PMS in both modern medicine and TCM diagnostic standards were collected through GeneCards, DisGeNET, Mala-Cards, and the System of Foundational Diagnostic Association(SoFDA) database, as well as published literature. Based on the interaction information between genes, a "disease-syndrome-symptom" correlation network of PMS was established. Based on data mining results, an improved rat model of PMS was prepared by combining chronic restraint stress with the classical progesterone-withdrawal mo-del to simulate emotional depression caused by external environmental stimuli during the clinical onset process, inducing pathological damage from both physiological and emotional dimensions. The evaluation of the improved model before and after modification included open field experiment scores, organ indices, ovarian pathological changes, serum levels of estradiol(E_2), follicle-stimulating hormone/luteinizing hormone(FSH/LH), 5-hydroxytryptamine(5-HT), dopamine(DA), norepinephrine(NE), as well as coagulation parameters and hemorheology indexes. By calculating the degree, betweenness, and closeness centrality of nodes in the "disease-syndrome-symptom" correlation network, 163 core genes with topological importance were identified. Further biological function mining results indicated that core genes in PMS mainly participated in the regulation of the "nervous-endocrine-immune" system and pathways related to circulatory disorders. Mapping analysis of clinical phenotype symptom gene sets suggested significant correlations between core genes in PMS and depressive symptoms and pain symptoms caused by blood stasis. Compared with the simple progesterone withdrawal model, rats subjected to combined injections and restraint stress showed more significant abnormalities in open field experiment scores, ovarian tissue pathology, serum neurotransmitter levels of 5-HT and DA, as well as serum hormone levels of E_2 and FSH/LH. The modified modeling conditions exacerbated the pathological changes in blood rheology, coagulation function, and red blood cell morphology in model rats, confirming that the improved rat model could characterize the "nervous-endocrine-immune" system disorder and circulatory system disorders in the occurrence and progression of PMS, consistent with the clinical diagnostic and therapeutic standards of both TCM and western medicine. The establishment of the improved rat model of PMS can provide a reliable experimental carrier for elucidating the pathogenesis of PMS and discovering and evaluating therapeutic drugs. It also provides references for objectively reflecting the clinical characteristics of PMS in TCM and western medicine and precision treatment.


Subject(s)
Disease Models, Animal , Premenstrual Syndrome , Progesterone , Animals , Rats , Premenstrual Syndrome/drug therapy , Premenstrual Syndrome/physiopathology , Female , Progesterone/blood , Rats, Sprague-Dawley , Humans , Emotions/drug effects , Medicine, Chinese Traditional , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology
7.
J Agric Food Chem ; 72(31): 17125-17137, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39047218

ABSTRACT

Weed resistance is a critical issue in crop production. Among the known herbicides, 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are crucial for addressing weed resistance. HPPD inhibitors constitute a pivotal aspect of contemporary crop protection strategies. The advantages of these herbicides are their broad weed spectrum, flexible application, and excellent compatibility with other herbicides. They also exhibit satisfactory crop selectivity and low toxicity and are environmentally friendly. An increasing number of new HPPD inhibitors have been designed by combining computer-aided drug design with conventional design approaches. Herein, the molecular design and structural features of innovative HPPD inhibitors are reviewed to guide the development of new HPPD inhibitors possessing an enhanced biological efficacy.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Drug Design , Enzyme Inhibitors , Herbicides , Plant Weeds , 4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Herbicides/chemistry , Herbicides/pharmacology , Herbicides/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Plant Weeds/drug effects , Plant Weeds/enzymology , Plant Proteins/chemistry , Plant Proteins/antagonists & inhibitors , Weed Control , Herbicide Resistance , Structure-Activity Relationship , Molecular Structure
8.
Int J Biol Macromol ; 276(Pt 1): 133892, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019355

ABSTRACT

Two important plant enzymes are 4-hydroxyphenylpyruvate dioxygenase (HPPD; EC 1.13.11.27), which is necessary for biosynthesis of plastoquinone and tocopherols, and phytoene dehydrogenase (PDS; EC 1.3.99.26), which plays an important role in colour rendering. Dual-target proteins that inhibit pigment synthesis will prevent resistant weeds and improve the spectral characteristics of herbicides. This study introduces virtual screening of pharmacophores based on the complex structure of the two targets. A three-dimensional database was established by screening 1,492,858 compounds based on the Lipinski principle. HPPD&PDS dual-target receptor-ligand pharmacophore models were then constructed, and nine potential dual-target inhibitors were obtained through pharmacophore modeling, molecular docking, and molecular dynamics simulations. Ultimately, ADMET prediction software yielded three compounds with high potential as dual-target herbicides. The obtained nine inhibitors were stable when combined with both HPPD and PDS proteins. This study offers guidance for the development of HPPD&PDS dual-target inhibitors with novel skeletons.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Enzyme Inhibitors , Molecular Docking Simulation , 4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Herbicides/chemistry , Herbicides/pharmacology , Molecular Dynamics Simulation , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Drug Evaluation, Preclinical
9.
Toxicol Appl Pharmacol ; 489: 117006, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880189

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the most fatal cancers worldwide. Most ESCC patients are diagnosed at an advanced stage; however, current research on in vivo animal models accurately reflecting their clinical presentation is lacking. Alcohol consumption is a major risk factor for ESCC and has been used in several disease models for disease induction. In this study, we used 4-nitroquinoline-1-oxide in combination with ethanol to induce an in vivo ESCC mouse model. Esophageal tissues were stained with hematoxylin and eosin for histopathological examination and lesion scoring. In cellular experiments, cell adhesion and migration invasion ability were observed using phalloidin staining, cell scratch and transwell assays, respectively, and the expression of epithelial-mesenchymal transition-related markers was detected using quantitative reverse transcription polymerase chain reaction and western blotting. The results showed that ethanol-exposed mice lost more weight and had an increased number of esophageal nodules. Histological examination revealed that the lesion scores of the ethanol-exposed esophageal samples were significantly higher than those of the unexposed esophageal samples. Furthermore, ethanol-exposed esophageal cancer samples had more severe lesions with infiltration of tumor cells into the muscularis propria. In vitro cellular experiments showed that ethanol exposure induced cytoskeletal microfilament formation, promoted cell migration invasion elevated the expression of N-cadherin and Snail, and decreased the expression of E-cadherin. In conclusion, ethanol exposure exacerbates ESCC, promotes tumor cell infiltration into the muscularis propria, and could be an effective agent for establishing innovative models of invasive carcinoma.


Subject(s)
4-Nitroquinoline-1-oxide , Disease Models, Animal , Epithelial-Mesenchymal Transition , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Ethanol , Neoplasm Invasiveness , Animals , 4-Nitroquinoline-1-oxide/toxicity , Esophageal Neoplasms/chemically induced , Esophageal Neoplasms/pathology , Ethanol/toxicity , Mice , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/chemically induced , Epithelial-Mesenchymal Transition/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Male , Humans , Carcinogenesis/chemically induced , Carcinogenesis/drug effects , Carcinogenesis/pathology , Cell Adhesion/drug effects
10.
Aging (Albany NY) ; 16(11): 9918-9932, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38850524

ABSTRACT

BACKGROUND: Colon cancer (CC) is the most frequently occurring digestive system malignancy and is associated with a dismal prognosis. While super-enhancer (SE) genes have been identified as prognostic markers in several cancers, their potential as practical prognostic markers for CC patients remains unexplored. METHODS: We obtained super-enhancer-related genes (SERGs) from the Human Super-Enhancer Database (SEdb). Transcriptome and relevant clinical data for colon cancer (CC) were sourced from the Gene Expression Omnibus (GEO) database. Subsequently, we identified up-regulated SERGs by the Weighted Gene Co-expression Network Analysis (WGCNA). Prognostic signatures were constructed via univariate and multivariate Cox regression analysis. We then delved into the mechanisms of these predictive genes by examining immune infiltration. We also assessed differential sensitivities to chemotherapeutic drugs between high- and low-SERGs risk patients. The critical gene was further validated using external datasets and finally confirmed by qRT PCR. RESULTS: We established a ten-gene risk score prognostic model (S100A11, LZTS2, CYP2S1, ZNF552, PSMG1, GJC1, NXN, and DCBLD2), which can effectively predict patient survival rates. This model demonstrated effective prediction capabilities in survival rates at 1, 3, and 5 years and was successfully validated using external datasets. Furthermore, we detected significant differences in immune cell infiltration between high- and low-SERGs risk groups. Notably, high-risk patients exhibited heightened sensitivity to four chemotherapeutic agents, suggesting potential benefits for precision therapy in CC patients. Finally, qRT-PCR validation revealed a significant upregulation of LZTS2 mRNA expression in CC cells. CONCLUSION: These findings reveal that the SERGs model could effectively predict the prognosis of CC.


Subject(s)
Biomarkers, Tumor , Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/mortality , Colonic Neoplasms/pathology , Prognosis , Biomarkers, Tumor/genetics , Transcriptome , Databases, Genetic , Gene Expression Profiling , Female , Gene Regulatory Networks
11.
Sci Rep ; 14(1): 12827, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834834

ABSTRACT

Gut microbiota plays a crucial role in gastrointestinal tumors. Additionally, gut microbes influence the progression of esophageal cancer. However, the major bacterial genera that affect the invasion and metastasis of esophageal cancer remain unknown, and the underlying mechanisms remain unclear. Here, we investigated the gut flora and metabolites of patients with esophageal squamous cell carcinoma and found abundant Bacteroides and increased secretion and entry of the surface antigen lipopolysaccharide (LPS) into the blood, causing inflammatory changes in the body. We confirmed these results in a mouse model of 4NQO-induced esophageal carcinoma in situ and further identified epithelial-mesenchymal transition (EMT) occurrence and TLR4/Myd88/NF-κB pathway activation in mouse esophageal tumors. Additionally, in vitro experiments revealed that LPS from Bacteroides fragile promoted esophageal cancer cell proliferation, migration, and invasion, and induced EMT by activating the TLR4/Myd88/NF-κB pathway. These results reveal that Bacteroides are closely associated with esophageal cancer progression through a higher inflammatory response level and signaling pathway activation that are both common to inflammation and tumors induced by LPS, providing a new biological target for esophageal cancer prevention or treatment.


Subject(s)
Epithelial-Mesenchymal Transition , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Lipopolysaccharides , Myeloid Differentiation Factor 88 , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/metabolism , Animals , NF-kappa B/metabolism , Humans , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/microbiology , Mice , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/microbiology , Epithelial-Mesenchymal Transition/drug effects , Cell Line, Tumor , Neoplasm Invasiveness , Inflammation/metabolism , Inflammation/pathology , Bacteroidetes , Gastrointestinal Microbiome , Cell Movement/drug effects , Male , Neoplasm Metastasis , Cell Proliferation , Female
12.
J Agric Food Chem ; 72(20): 11321-11330, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38714361

ABSTRACT

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial target enzyme in albino herbicides. The inhibition of HPPD activity interferes with the synthesis of carotenoids, blocking photosynthesis and resulting in bleaching and necrosis. To develop herbicides with excellent activity, a series of 3-hydroxy-2-(6-substituted phenoxynicotinoyl)-2-cyclohexen-1-one derivatives were designed via active substructure combination. The title compounds were characterized via infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopies, and high-resolution mass spectrometry. The structure of compound III-17 was confirmed via single-crystal X-ray diffraction. Preliminary tests demonstrated that some compounds had good herbicidal activity. Crop safety tests revealed that compound III-29 was safer than the commercial herbicide mesotrione in wheat and peanuts. Moreover, the compound exhibited the highest inhibitory activity against Arabidopsis thaliana HPPD (AtHPPD), with a half-maximal inhibitory concentration of 0.19 µM, demonstrating superior activity compared with mesotrione (0.28 µM) in vitro. A three-dimensional quantitative structure-activity relationship study revealed that the introduction of smaller groups to the 5-position of cyclohexanedione and negative charges to the 3-position of the benzene ring enhanced the herbicidal activity. A molecular structure comparison demonstrated that compound III-29 was beneficial to plant absorption and conduction. Molecular docking and molecular dynamics simulations further verified the stability of the complex formed by compound III-29 and AtHPPD. Thus, this study may provide insights into the development of green and efficient herbicides.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Arabidopsis , Drug Design , Enzyme Inhibitors , Herbicides , 4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , Arabidopsis/drug effects , Arabidopsis/enzymology , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Cyclohexanones/chemistry , Cyclohexanones/pharmacology , Cyclohexanones/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Herbicides/chemical synthesis , Herbicides/pharmacology , Ketones/chemical synthesis , Ketones/pharmacology , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Triticum/drug effects
13.
FASEB J ; 38(10): e23671, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38752538

ABSTRACT

NLRP3 inflammasome activation has emerged as a critical initiator of inflammatory response in ischemic retinopathy. Here, we identified the effect of a potent, selective NLRP3 inhibitor, MCC950, on autophagy and apoptosis under hypoxia. Neonatal mice were exposed to hyperoxia for 5 days to establish oxygen-induced retinopathy (OIR) model. Intravitreal injection of MCC950 was given, and then autophagy and apoptosis markers were assessed. Retinal autophagy, apoptosis, and related pathways were evaluated by western blot, immunofluorescent labeling, transmission electron microscopy, and TUNEL assay. Autophagic activity in Müller glia after NLRP3 inflammasome inhibition, together with its influence on photoreceptor death, was studied using western blot, immunofluorescence staining, mRFP-GFP-LC3 adenovirus transfection, cell viability, proliferation, and apoptosis assays. Results showed that activation of NLRP3 inflammasome in Müller glia was detected in OIR model. MCC950 could improve impaired retinal autophagic flux and attenuate retinal apoptosis while it regulated the retinal AMPK/mTOR/ULK-1 pathway. Suppressed autophagy and depressed proliferation capacity resulting from hypoxia was promoted after MCC950 treatment in Müller glia. Inhibition of AMPK and ULK-1 pathway significantly interfered with the MCC950-induced autophagy activity, indicating MCC950 positively modulated autophagy through AMPK/mTOR/ULK-1 pathway in Müller cells. Furthermore, blockage of autophagy in Müller glia significantly induced apoptosis in the cocultured 661W photoreceptor cells, whereas MCC950 markedly preserved the density of photoreceptor cells. These findings substantiated the therapeutic potential of MCC950 against impaired autophagy and subsequent apoptosis under hypoxia. Such protective effect might involve the modulation of AMPK/mTOR/ULK-1 pathway. Targeting NLRP3 inflammasome in Müller glia could be beneficial for photoreceptor survival under hypoxic conditions.


Subject(s)
Apoptosis , Autophagy , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Photoreceptor Cells, Vertebrate , Sulfonamides , Animals , Mice , Apoptosis/drug effects , Autophagy/drug effects , Cyclic S-Oxides/pharmacology , Ependymoglial Cells/metabolism , Ependymoglial Cells/drug effects , Furans/pharmacology , Hypoxia/metabolism , Indenes/pharmacology , Inflammasomes/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Signal Transduction/drug effects , Sulfonamides/pharmacology , Sulfones/pharmacology
14.
Free Radic Biol Med ; 221: 169-180, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38782079

ABSTRACT

Spinal cord injury is a serious traumatic nervous system disorder characterized by extensive neuronal apoptosis. Oxidative stress, a key factor in neuronal apoptosis, leads to the accumulation of reactive oxygen species, making mitochondrial quality control within cells crucial. Previous studies have demonstrated zinc's anti-inflammatory and anti-apoptotic properties in protecting mitochondria during spinal cord injury treatment, yet the precise mechanisms remain elusive. Single-cell sequencing analysis has identified Lgals3 and Bax as core genes in apoptosis. This study aimed to investigate whether zinc ions protect intracellular mitochondria by inhibiting the apoptotic proteins Lgals3 and Bax. We elucidated zinc ions' key role in mitigating mitochondrial quality control dysfunction triggered by oxidative stress and confirmed this was achieved by targeting the Lgals3-Bax pathway. Zinc's inhibitory effect on this pathway not only preserved mitochondrial integrity but also significantly reduced PANoptosis after spinal cord injury. Under oxidative stress, zinc ion regulation of mitochondrial quality control reveals an organelle-targeted therapeutic strategy, offering a novel approach for more precise treatment of spinal cord injury.


Subject(s)
Apoptosis , Mitochondria , Neurons , Oxidative Stress , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/drug therapy , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Animals , Apoptosis/drug effects , Neurons/metabolism , Neurons/pathology , Neurons/drug effects , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Zinc/metabolism , Reactive Oxygen Species/metabolism , Disease Models, Animal , Signal Transduction/drug effects , Mice , Humans , Rats
15.
Sci Data ; 11(1): 439, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698022

ABSTRACT

China, as the world's biggest soybean importer and fourth-largest producer, needs accurate mapping of its planting areas for global food supply stability. The challenge lies in gathering and collating ground survey data for different crops. We proposed a spatiotemporal migration method leveraging vegetation indices' temporal characteristics. This method uses a feature space of six integrals from the crops' phenological curves and a concavity-convexity index to distinguish soybean and non-soybean samples in cropland. Using a limited number of actual samples and our method, we extracted features from optical time-series images throughout the soybean growing season. The cloud and rain-affected data were supplemented with SAR data. We then used the random forest algorithm for classification. Consequently, we developed the 10-meter resolution ChinaSoybean10 maps for the ten primary soybean-producing provinces from 2019 to 2022. The map showed an overall accuracy of about 93%, aligning significantly with the statistical yearbook data, confirming its reliability. This research aids soybean growth monitoring, yield estimation, strategy development, resource management, and food scarcity mitigation, and promotes sustainable agriculture.


Subject(s)
Crops, Agricultural , Glycine max , Crops, Agricultural/growth & development , China , Spatio-Temporal Analysis , Agriculture
16.
Int J Biol Macromol ; 270(Pt 1): 132344, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754666

ABSTRACT

Hydroxypropyl-gamma-cyclodextrin (HPγCD) inclusion complex nanofibers (Lut/HPγCD-IC-NF) containing Luteolin (Lut) were prepared by electrospinning technology. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) spectra confirmed the formation of Lut/HPγCD-IC-NF. Scanning electron microscopy (SEM) images showed that the morphology of Lut/HPγCD-IC-NF was uniform and bead-free, suggesting that self-assembled aggregates, macromolecules with higher molecular weights, were formed by strong hydrogen bonding interactions between the cyclodextrin inclusion complexes. Confocal laser scanning microscopy (CLSM) images showed that Lut was distributed in Lut/HPγCD-IC-NF. Proton nuclear magnetic resonance (1H NMR) spectroscopy revealed the change in chemical shift of the proton peak between Lut and HPγCD, confirming the formation of inclusion complex. Thermogravimetric analysis (TGA) proved that Lut/HPγCD-IC-NF had good thermal stability. The phase solubility test confirmed that HPγCD had a solubilizing effect on Lut. When the solubility of HPγCD reached 10 mM, the solubility of Lut increased by 15-fold. The drug loading test showed that the content of Lut in fibers reached 8.57 ± 0.02 %. The rapid dissolution experiment showed that Lut/HPγCD-IC-NF dissolved within 3 s. The molecular simulation provides three-dimensional evidence for the formation of inclusion complexes between Lut and HPγCD. Antibacterial experiments showed that Lut/HPγCD-IC-NF had enhanced antibacterial activity against S. aureus. Lut/HPγCD-IC-NF exhibited excellent antioxidant properties with a free radical scavenging ability of 89.5 ± 1.1 %. In vitro release experiments showed Lut/HPγCD-IC-NF had a higher release amount of Lut. In conclusion, Lut/HPγCD-IC-NF improved the physicochemical properties and bioavailability of Lut, providing potential applications of Lut in the pharmaceutical field.


Subject(s)
Luteolin , Nanofibers , gamma-Cyclodextrins , Nanofibers/chemistry , gamma-Cyclodextrins/chemistry , Luteolin/chemistry , Luteolin/pharmacology , Solubility , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Staphylococcus aureus/drug effects , Spectroscopy, Fourier Transform Infrared , Picrates/chemistry , Biphenyl Compounds/chemistry
17.
Int J Biol Macromol ; 271(Pt 2): 132731, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38815945

ABSTRACT

We explored the effect of inhibition of thioredoxin interacting protein (Txnip) on neuroprotection in Müller cells under high glucose. Wild-type (WT) and Txnip knockout (Txnip-/-) mice were used to establish a streptozotocin (STZ)-induced diabetes model and a Müller cells high glucose model. We detected BDNF expression and PI3K/AKT/CREB pathway activation levels in the retina and Müller cells of each group in vivo and in vitro experiments. The Txnip-/- STZ group showed higher expression of BDNF and phosphorylation of PI3K/AKT/CREB in retina, and less retinal photoreceptor apoptosis was observed in Txnip-/- diabetic group than in WT. After using an inhibitor of PI3K signaling pathway, BDNF expression was reduced; In vitro co-cultured with Müller cells in different groups, 661 W cells showed different situations, Txnip-/- Müller cells maximum downregulated Cleaved-caspase 3 expression in 661 W, accompanied by an increase in Bcl-2/Bax ratio. These findings indicate that inhibiting endogenous Txnip in mouse Müller cells can promote their expression and secretion of BDNF, thereby reducing HG induced photoreceptor apoptosis and having important neuroprotective effects on DR. The regulation of BDNF expression by Txnip may be achieved by activating the PI3K/AKT/CREB pathway. This study suggests that regulating Txnip may be a potential target for DR treatment.


Subject(s)
Apoptosis , Carrier Proteins , Diabetes Mellitus, Experimental , Ependymoglial Cells , Phosphatidylinositol 3-Kinases , Signal Transduction , Animals , Apoptosis/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Ependymoglial Cells/metabolism , Ependymoglial Cells/drug effects , Ependymoglial Cells/pathology , Carrier Proteins/metabolism , Carrier Proteins/genetics , Mice , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mice, Knockout , Photoreceptor Cells/metabolism , Photoreceptor Cells/drug effects , Photoreceptor Cells/pathology , Gene Knockdown Techniques , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Thioredoxins/metabolism , Thioredoxins/genetics , Male , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/genetics , Diabetic Retinopathy/pathology , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Photoreceptor Cells, Vertebrate/drug effects , Disease Models, Animal
19.
J Pers Med ; 14(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38793063

ABSTRACT

Background: KEYNOTE-522 resulted in FDA approval of the immune checkpoint inhibitor pembrolizumab in combination with neoadjuvant chemotherapy for patients with early-stage, high-risk, triple-negative breast cancer (TNBC). Unfortunately, pembrolizumab is associated with several immune-related adverse events (irAEs). We aimed to identify potential tumor microenvironment (TME) biomarkers which could predict patients who may attain pathological complete response (pCR) with chemotherapy alone and be spared the use of anti-PD-1 immunotherapy. Methods: Comprehensive immune profiling, including RNA-seq gene expression assessment of 395 immune genes, was performed on matched FFPE tumor samples from 22 stage I-III TNBC patients (14 patients treated with neoadjuvant chemotherapy alone (NAC) and 8 treated with neoadjuvant chemotherapy combined with pembrolizumab (NAC+I)). Results: Differential gene expression analysis revealed that in the NAC group, IL12B and IL13 were both significantly associated with pCR. In the NAC+I group, LCK and TP63 were significantly associated with pCR. Patients in both treatment groups exhibiting pCR tended to have greater tumor inflammation than non-pCR patients. In the NAC+I group, patients with pCR tended to have greater cell proliferation and higher PD-L1 expression, while in the NAC group, patients with pCR tended to have lower cancer testis antigen expression. Additionally, the NAC+I group trended toward a lower relative dose intensity averaged across all chemotherapy drugs, suggesting that more dose reductions or treatment delays occurred in the NAC+I group than the NAC group. Conclusions: A comprehensive understanding of immunologic factors could potentially predict pCR to chemotherapy alone, enabling the avoidance of the unnecessary treatment of these patients with checkpoint inhibitors.

20.
J Dairy Sci ; 107(9): 7423-7434, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38754818

ABSTRACT

Excessive concentrations of free fatty acids (FFA) are the main factors causing immune dysfunction and inflammation in dairy cows with ketosis. Polarization of macrophages (the process of macrophages freely switching from one phenotype to another) into M1 or M2 phenotypes is an important event during inflammation induced by environmental stimuli. In nonruminants, mammalian target of rapamycin (mTOR)-mediated autophagy (a major waste degradation process) regulates macrophage polarization. Thus, our objective was to unravel the role of mTOR-mediated autophagy on macrophage polarization in ketotic dairy cows. We performed 4 experiments: (1) In vitro differentiated monocyte-derived macrophages from healthy dairy cows or dairy cows with clinical ketosis (CK) were treated for 24 h with 100 ng/mL LPS and 100 ng/mL IFN-γ or with 10 ng/mL IL4 and 10 ng/mL IL10; (2) Immortalized bovine macrophages were treated for 24 h with 0, 0.3, 0.6, or 1.2 mM FFA, LPS, and IFN-γ, or with IL4 and IL10; (3) Macrophages were pretreated with 2 µM 4,6-dimorpholino-N-(4-nitrophenyl)-1,3,5-triazin-2-amine (MHY1485) for 30 min before treatment with LPS and IFN-γ or IL4 and IL10; (4) Macrophages were pretreated with 100 nM rapamycin (RAPA) for 2 h before treatment with LPS and IFN-γ or IL4 and IL10. Compared with healthy cows, cows with CK had a greater mean fluorescence intensity (MFI) of CD86+, but lower MFI of CD206+ and lower number of autophagosomes and autolysosomes in macrophages. Exogenous FFA treatment upregulated protein abundance of inducible nitric oxide synthase (iNOS) and the MFI of CD86, whereas it downregulated the protein abundance of arginase 1 and the MFI of CD206. In addition, FFA increased the p-p65/p65 protein abundance and tumor necrosis factor α, IL1B, and IL6 mRNA abundance, but decreased LC3-phosphatidylethanolamine conjugate protein abundance and the number of autophagosomes and autolysosomes number. Pretreatment with MHY1485 promoted macrophage M1 polarization and inhibited macrophage M2 polarization via decreased mTOR-mediated autophagy. Activation of mTOR-mediated autophagy by pretreatment with RAPA attenuated the upregulation of inflammation in M1 macrophages that was induced by FFA. These data revealed that high concentrations of FFA promote macrophage M1 polarization in ketotic dairy cows by impairing mTOR-mediated autophagy.


Subject(s)
Autophagy , Macrophages , TOR Serine-Threonine Kinases , Animals , Cattle , Macrophages/drug effects , Autophagy/drug effects , Female , TOR Serine-Threonine Kinases/metabolism , Fatty Acids/pharmacology , Fatty Acids/metabolism , Ketosis/veterinary , Lipopolysaccharides/pharmacology , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL