Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-39110623

ABSTRACT

BACKGROUND: The domain of brain-computer interface (BCI) technology has experienced significant expansion in recent years. However, the field continues to face a pivotal challenge due to the dearth of high-quality datasets. This lack of robust datasets serves as a bottleneck, constraining the progression of algorithmic innovations and, by extension, the maturation of the BCI field. FINDINGS: This study details the acquisition and compilation of electroencephalogram data across 3 distinct dual-frequency steady-state visual evoked potential (SSVEP) paradigms, encompassing over 100 participants. Each experimental condition featured 40 individual targets with 5 repetitions per target, culminating in a comprehensive dataset consisting of 21,000 trials of dual-frequency SSVEP recordings. We performed an exhaustive validation of the dataset through signal-to-noise ratio analyses and task-related component analysis, thereby substantiating its reliability and effectiveness for classification tasks. CONCLUSIONS: The extensive dataset presented is set to be a catalyst for the accelerated development of BCI technologies. Its significance extends beyond the BCI sphere and holds considerable promise for propelling research in psychology and neuroscience. The dataset is particularly invaluable for discerning the complex dynamics of binocular visual resource distribution.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Evoked Potentials, Visual , Humans , Male , Female , Adult , Young Adult , Algorithms
2.
J Neural Eng ; 21(4)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39029477

ABSTRACT

Objective. Monitoring the depth of anaesthesia (DOA) during surgery is of critical importance. However, during surgery electroencephalography (EEG) is usually subject to various disturbances that affect the accuracy of DOA. Therefore, accurately estimating noise in EEG and reliably assessing DOA remains an important challenge. In this paper, we proposed a signal quality index (SQI) network (SQINet) for assessing the EEG signal quality and a DOA network (DOANet) for analyzing EEG signals to precisely estimate DOA. The two networks are termed SQI-DOANet.Approach. The SQINet contained a shallow convolutional neural network to quickly determine the quality of the EEG signal. The DOANet comprised a feature extraction module for extracting features, a dual attention module for fusing multi-channel and multi-scale information, and a gated multilayer perceptron module for extracting temporal information. The performance of the SQI-DOANet model was validated by training and testing the model on the large VitalDB database, with the bispectral index (BIS) as the reference standard.Main results. The proposed DOANet yielded a Pearson correlation coefficient with the BIS score of 0.88 in the five-fold cross-validation, with a mean absolute error (MAE) of 4.81. The mean Pearson correlation coefficient of SQI-DOANet with the BIS score in the five-fold cross-validation was 0.82, with an MAE of 5.66.Significance. The SQI-DOANet model outperformed three compared methods. The proposed SQI-DOANet may be used as a new deep learning method for DOA estimation. The code of the SQI-DOANet will be made available publicly athttps://github.com/YuRui8879/SQI-DOANet.


Subject(s)
Anesthesia , Electroencephalography , Neural Networks, Computer , Electroencephalography/methods , Electroencephalography/standards , Humans , Anesthesia/methods , Deep Learning , Signal Processing, Computer-Assisted
3.
BMC Med ; 22(1): 257, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902696

ABSTRACT

BACKGROUND: Current research on the neurological impact of SARS-CoV-2 primarily focuses on the elderly or severely ill individuals. This study aims to explore the diverse neurological consequences of SARS-CoV-2 infection, with a particular focus on mildly affected children and adolescents. METHODS: A cohort study was conducted to collect pre- and post-infection resting-state electroencephalogram (EEG) data from 185 participants and 181 structured questionnaires of long-term symptoms across four distinct age groups. The goal was to comprehensively evaluate the impact of SARS-CoV-2 infection on these different age demographics. The study analyzed EEG changes of SARS-CoV-2 by potential biomarkers across age groups using both spatial and temporal approaches. RESULTS: Spatial analysis indicated that children and adolescents exhibit smaller changes in brain network and microstate patterns post-infection, implying a milder cognitive impact. Sequential linear analyses showed that SARS-CoV-2 infection is associated with a marked rise in low-complexity, synchronized neural activity within low-frequency EEG bands. This is evidenced by a significant increase in Hjorth activity within the theta band and Hjorth mobility in the delta band. Sequential nonlinear analysis indicated a significant reduction in the Hurst exponent across all age groups, pointing to increased chaos and complexity within the cognitive system following infection. Furthermore, linear regression analysis based on questionnaires established a significant positive relationship between the magnitude of changes in these neural indicators and the persistence of long-term symptoms post-infection. CONCLUSIONS: The findings underscore the enduring neurological impacts of SARS-CoV-2 infection, marked by cognitive decline and increased EEG disarray. Although children and adolescents experienced milder effects, cognitive decline and heightened low-frequency electrical activity were evident. These observations might contribute to understanding potential anxiety, insomnia, and neurodevelopmental implications.


Subject(s)
COVID-19 , Cognitive Dysfunction , Electroencephalography , SARS-CoV-2 , Humans , COVID-19/physiopathology , Child , Adolescent , Male , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/virology , Female , Young Adult , Cohort Studies , Age Factors , Adult , Child, Preschool , Brain/physiopathology , Brain/virology , Middle Aged , Aged
4.
Sensors (Basel) ; 24(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38894269

ABSTRACT

Train wheels are crucial components for ensuring the safety of trains. The accurate and fast identification of wheel tread defects is necessary for the timely maintenance of wheels, which is essential for achieving the premise of conditional repair. Image-based detection methods are commonly used for detecting tread defects, but they still have issues with the misdetection of water stains and the leaking of small defects. In this paper, we address the challenges posed by the detection of wheel tread defects by proposing improvements to the YOLOv8 model. Firstly, the impact of water stains on tread defect detection is avoided by optimising the structure of the detection layer. Secondly, an improved SPPCSPC module is introduced to enhance the detection of small targets. Finally, the SIoU loss function is used to accelerate the convergence speed of the network, which ensures defect recognition accuracy with high operational efficiency. Validation was performed on the constructed tread defect dataset. The results demonstrate that the enhanced YOLOv8 model in this paper outperforms the original network and significantly improves the tread defect detection indexes. The average precision, accuracy, and recall reached 96.95%, 96.30%, and 95.31%.

5.
Sensors (Basel) ; 24(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38894311

ABSTRACT

In recent years, there has been a considerable amount of research on visual evoked potential (VEP)-based brain-computer interfaces (BCIs). However, it remains a big challenge to detect VEPs elicited by small visual stimuli. To address this challenge, this study employed a 256-electrode high-density electroencephalogram (EEG) cap with 66 electrodes in the parietal and occipital lobes to record EEG signals. An online BCI system based on code-modulated VEP (C-VEP) was designed and implemented with thirty targets modulated by a time-shifted binary pseudo-random sequence. A task-discriminant component analysis (TDCA) algorithm was employed for feature extraction and classification. The offline and online experiments were designed to assess EEG responses and classification performance for comparison across four different stimulus sizes at visual angles of 0.5°, 1°, 2°, and 3°. By optimizing the data length for each subject in the online experiment, information transfer rates (ITRs) of 126.48 ± 14.14 bits/min, 221.73 ± 15.69 bits/min, 258.39 ± 9.28 bits/min, and 266.40 ± 6.52 bits/min were achieved for 0.5°, 1°, 2°, and 3°, respectively. This study further compared the EEG features and classification performance of the 66-electrode layout from the 256-electrode EEG cap, the 32-electrode layout from the 128-electrode EEG cap, and the 21-electrode layout from the 64-electrode EEG cap, elucidating the pivotal importance of a higher electrode density in enhancing the performance of C-VEP BCI systems using small stimuli.


Subject(s)
Algorithms , Brain-Computer Interfaces , Electroencephalography , Evoked Potentials, Visual , Humans , Evoked Potentials, Visual/physiology , Electroencephalography/methods , Male , Adult , Female , Young Adult , Photic Stimulation , Electrodes , Signal Processing, Computer-Assisted
6.
Sci Data ; 11(1): 546, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806531

ABSTRACT

For highly autonomous vehicles, human does not need to operate continuously vehicles. The brain-computer interface system in autonomous vehicles will highly depend on the brain states of passengers rather than those of human drivers. It is a meaningful and vital choice to translate the mental activities of human beings, essentially playing the role of advanced sensors, into safe driving. Quantifying the driving risk cognition of passengers is a basic step toward this end. This study reports the creation of an fNIRS dataset focusing on the prefrontal cortex activity in fourteen types of highly automated driving scenarios. This dataset considers age, sex and driving experience factors and contains the data collected from an 8-channel fNIRS device and the data of driving scenarios. The dataset provides data support for distinguishing the driving risk in highly automated driving scenarios via brain-computer interface systems, and it also provides the possibility of preventing potential hazards in some scenarios, in which risk remains at a high value for an extended period, before hazard occurs.


Subject(s)
Automobile Driving , Cognition , Adult , Female , Humans , Male , Automation , Brain-Computer Interfaces , Prefrontal Cortex/physiology , Spectroscopy, Near-Infrared
7.
Article in English | MEDLINE | ID: mdl-38625770

ABSTRACT

This study embarks on a comprehensive investigation of the effectiveness of repetitive transcranial direct current stimulation (tDCS)-based neuromodulation in augmenting steady-state visual evoked potential (SSVEP) brain-computer interfaces (BCIs), alongside exploring pertinent electroencephalography (EEG) biomarkers for assessing brain states and evaluating tDCS efficacy. EEG data were garnered across three distinct task modes (eyes open, eyes closed, and SSVEP stimulation) and two neuromodulation patterns (sham-tDCS and anodal-tDCS). Brain arousal and brain functional connectivity were measured by extracting features of fractal EEG and information flow gain, respectively. Anodal-tDCS led to diminished offsets and enhanced information flow gains, indicating improvements in both brain arousal and brain information transmission capacity. Additionally, anodal-tDCS markedly enhanced SSVEP-BCIs performance as evidenced by increased amplitudes and accuracies, whereas sham-tDCS exhibited lesser efficacy. This study proffers invaluable insights into the application of neuromodulation methods for bolstering BCI performance, and concurrently authenticates two potent electrophysiological markers for multifaceted characterization of brain states.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Evoked Potentials, Visual , Fractals , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Evoked Potentials, Visual/physiology , Male , Adult , Female , Young Adult , Arousal/physiology , Brain/physiology , Healthy Volunteers , Algorithms
8.
J Neural Eng ; 21(2)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38513290

ABSTRACT

Objective.Code-modulated visual evoked potential (c-VEP) based brain-computer interfaces (BCIs) exhibit high encoding efficiency. Nevertheless, the majority of c-VEP based BCIs necessitate an initial training or calibration session, particularly when the number of targets expands, which impedes the practicality. To address this predicament, this study introduces a calibration-free c-VEP based BCI employing narrow-band random sequences.Approach.For the encoding method, a series of random sequences were generated within a specific frequency band. The c-VEP signals were subsequently elicited through the application of on-type grid flashes that were modulated by these sequences. For the calibration-free decoding algorithm, filter-bank canonical correlation analysis (FBCCA) was utilized with the reference templates generated from the original sequences. Thirty-five subjects participated into an online BCI experiment. The performances of c-VEP based BCIs utilizing narrow-band random sequences with frequency bands of 15-25 Hz (NBRS-15) and 8-16 Hz (NBRS-8) were compared with that of a steady-state visual evoked potential (SSVEP) based BCI within a frequency range of 8-15.8 Hz.Main results.The offline analysis results demonstrated a substantial correlation between the c-VEPs and the original narrow-band random sequences. After parameter optimization, the calibration-free system employing the NBRS-15 frequency band achieved an average information transfer rate (ITR) of 78.56 ± 37.03 bits/min, which exhibited no significant difference compared to the performance of the SSVEP based system when utilizing FBCCA. The proposed system achieved an average ITR of 102.1 ± 57.59 bits/min in a simulation of a 1000-target BCI system.Significance.This study introduces a novel calibration-free c-VEP based BCI system employing narrow-band random sequences and shows great potential of the proposed system in achieving a large number of targets and high ITR.


Subject(s)
Brain-Computer Interfaces , Evoked Potentials, Visual , Humans , Electroencephalography/methods , Calibration , Algorithms , Photic Stimulation
9.
iScience ; 27(4): 109376, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38510138

ABSTRACT

Brain-computer interfaces (BCIs) offer a way to interact with computers without relying on physical movements. Non-invasive electroencephalography-based visual BCIs, known for efficient speed and calibration ease, face limitations in continuous tasks due to discrete stimulus design and decoding methods. To achieve continuous control, we implemented a novel spatial encoding stimulus paradigm and devised a corresponding projection method to enable continuous modulation of decoded velocity. Subsequently, we conducted experiments involving 17 participants and achieved Fitt's information transfer rate (ITR) of 0.55 bps for the fixed tracking task and 0.37 bps for the random tracking task. The proposed BCI with a high Fitt's ITR was then integrated into two applications, including painting and gaming. In conclusion, this study proposed a visual BCI based-control method to go beyond discrete commands, allowing natural continuous control based on neural activity.

10.
Sensors (Basel) ; 24(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38474903

ABSTRACT

In recent years, a multitude of self-supervised anomaly detection algorithms have been proposed. Among them, PatchCore has emerged as one of the state-of-the-art methods on the widely used MVTec AD benchmark due to its efficient detection capabilities and cost-saving advantages in terms of labeled data. However, we have identified that the PatchCore similarity principal approach faces significant limitations in accurately locating anomalies when there are positional relationships between similar samples, such as rotation, flipping, or misaligned pixels. In real-world industrial scenarios, it is common for samples of the same class to be found in different positions. To address this challenge comprehensively, we introduce Feature-Level Registration PatchCore (FR-PatchCore), which serves as an extension of the PatchCore method. FR-PatchCore constructs a feature matrix that is extracted into the memory bank and continually updated using the optimal negative cosine similarity loss. Extensive evaluations conducted on the MVTec AD benchmark demonstrate that FR-PatchCore achieves an impressive image-level anomaly detection AUROC score of up to 98.81%. Additionally, we propose a novel method for computing the mask threshold that enables the model to scientifically determine the optimal threshold and accurately partition anomalous masks. Our results highlight not only the high generalizability but also substantial potential for industrial anomaly detection offered by FR-PatchCore.

11.
Sensors (Basel) ; 24(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38475090

ABSTRACT

In the context of defect detection in high-speed railway train wheels, particularly in ultrasonic-testing B-scan images characterized by their small size and complexity, the need for a robust solution is paramount. The proposed algorithm, UT-YOLO, was meticulously designed to address the specific challenges presented by these images. UT-YOLO enhances its learning capacity, accuracy in detecting small targets, and overall processing speed by adopting optimized convolutional layers, a special layer design, and an attention mechanism. This algorithm exhibits superior performance on high-speed railway wheel UT datasets, indicating its potential. Crucially, UT-YOLO meets real-time processing requirements, positioning it as a practical solution for the dynamic and high-speed environment of railway inspections. In experimental evaluations, UT-YOLO exhibited good performance in best recall, mAP@0.5 and mAP@0.5:0.95 increased by 37%, 36%, and 43%, respectively; and its speed also met the needs of real-time performance. Moreover, an ultrasonic defect detection data set based on real wheels was created, and this research has been applied in actual scenarios and has helped to greatly improve manual detection efficiency.

12.
Article in English | MEDLINE | ID: mdl-38437148

ABSTRACT

In steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems, traditional flickering stimulation patterns face challenges in achieving a trade-off in both BCI performance and visual comfort across various frequency bands. To investigate the optimal stimulation paradigms with high performance and high comfort for each frequency band, this study systematically compared the characteristics of SSVEP and user experience of different stimulation paradigms with a wide stimulation frequency range of 1-60 Hz. The findings suggest that, for a better balance between system performance and user experience, ON and OFF grid stimuli with a Weber contrast of 50% can be utilized as alternatives to traditional flickering stimulation paradigms in the frequency band of 1-25 Hz. In the 25-35 Hz range, uniform flicker stimuli with the same 50% contrast are more suitable. In the higher frequency band, traditional uniform flicker stimuli with a high 300% contrast are preferred. These results are significant for developing high performance and user-friendly SSVEP-based BCI systems.


Subject(s)
Brain-Computer Interfaces , Evoked Potentials, Visual , Humans , Photic Stimulation/methods , Electroencephalography/methods , Computer Systems
13.
J Neural Eng ; 21(1)2024 02 16.
Article in English | MEDLINE | ID: mdl-38324909

ABSTRACT

Objective.Many subject-dependent methods were proposed for electroencephalogram (EEG) classification in rapid serial visual presentation (RSVP) task, which required a large amount of data from new subject and were time-consuming to calibrate system. Cross-subject classification can realize calibration reduction or zero calibration. However, cross-subject classification in RSVP task is still a challenge.Approach.This study proposed a multi-source domain adaptation based tempo-spatial convolution (MDA-TSC) network for cross-subject RSVP classification. The proposed network consisted of three modules. First, the common feature extraction with multi-scale tempo-spatial convolution was constructed to extract domain-invariant features across all subjects, which could improve generalization of the network. Second, the multi-branch domain-specific feature extraction and alignment was conducted to extract and align domain-specific feature distributions of source and target domains in pairs, which could consider feature distribution differences among source domains. Third, the domain-specific classifier was exploited to optimize the network through loss functions and obtain prediction for the target domain.Main results.The proposed network was evaluated on the benchmark RSVP dataset, and the cross-subject classification results showed that the proposed MDA-TSC network outperformed the reference methods. Moreover, the effectiveness of the MDA-TSC network was verified through both ablation studies and visualization.Significance.The proposed network could effectively improve cross-subject classification performance in RSVP task, and was helpful to reduce system calibration time.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Humans , Benchmarking , Calibration
14.
Sci Data ; 11(1): 196, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351064

ABSTRACT

A steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) system relies on the photic driving response to effectively elicit characteristic electroencephalogram (EEG) signals. However, traditional visual stimuli mainly adopt high-contrast black-and-white flickering stimulations, which are easy to cause visual fatigue. This paper presents an SSVEP dataset acquired at a wide frequency range from 1 to 60 Hz with an interval of 1 Hz using flickering stimuli under two different modulation depths. This dataset contains 64-channel EEG data from 30 healthy subjects when they fixated on a single flickering stimulus. The stimulus was rendered on an LCD display with a refresh rate of 240 Hz. Initially, the dataset was rigorously validated through comprehensive data analysis to investigate SSVEP responses and user experiences. Subsequently, BCI performance was evaluated through offline simulations of frequency-coded and phase-coded BCI paradigms. This dataset provides comprehensive and high-quality data for studying and developing SSVEP-based BCI systems.


Subject(s)
Brain-Computer Interfaces , Evoked Potentials, Visual , Humans , Algorithms , Electroencephalography , Healthy Volunteers , Photic Stimulation
15.
Neuroimage ; 289: 120548, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38382863

ABSTRACT

An essential priority of visual brain-computer interfaces (BCIs) is to enhance the information transfer rate (ITR) to achieve high-speed communication. Despite notable progress, noninvasive visual BCIs have encountered a plateau in ITRs, leaving it uncertain whether higher ITRs are achievable. In this study, we used information theory to study the characteristics and capacity of the visual-evoked channel, which leads us to investigate whether and how we can decode higher information rates in a visual BCI system. Using information theory, we estimate the upper and lower bounds of the information rate with the white noise (WN) stimulus. Consequently, we found out that the information rate is determined by the signal-to-noise ratio (SNR) in the frequency domain, which reflects the spectrum resources of the channel. Based on this discovery, we propose a broadband WN BCI by implementing stimuli on a broader frequency band than the steady-state visual evoked potentials (SSVEPs)-based BCI. Through validation, the broadband BCI outperforms the SSVEP BCI by an impressive 7 bps, setting a record of 50 bps. The integration of information theory and the decoding analysis presented in this study offers valuable insights applicable to general sensory-evoked BCIs, providing a potential direction of next-generation human-machine interaction systems.


Subject(s)
Brain-Computer Interfaces , Humans , Evoked Potentials, Visual , Electroencephalography , Signal-To-Noise Ratio , Communication , Photic Stimulation , Algorithms
16.
Environ Res ; 246: 118149, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38199466

ABSTRACT

Contaminated farmland leads to serious problems for human health through biomagnification in the soil-crop-human chain. In this paper, we have established a new soil remediation strategy using periphyton for the production of safer rice. Four representative polycyclic aromatic hydrocarbons (PAHs), including phenanthrene (Phe), pyrene (Pyr), benzo[b]fluoranthene (BbF), and benzo[a]pyrene (BaP), were chosen to generate artificially contaminated soil. Pot experiments demonstrated that in comparison with rice cultivation in polluted soil with ΣPAHs (50 mg kg-1) but without periphyton, adding periphyton decreased ΣPAHs contents in both rice roots and shoots by 98.98% and 99.76%, respectively, and soil ΣPAHs removal reached 94.19%. Subsequently, risk assessment of ΣPAHs based on toxic equivalent concentration (TEQ), pollution load index (PLI), hazard index (HI), toxic unit for PAHs mixture (TUm), and incremental lifetime cancer risk (ILCR) indicated that periphyton lowered the ecological and carcinogenicity risks of PAHs. Besides, the role of periphyton in enhancing the rice productivity was revealed. The results indicated that periphyton alleviated the oxidative stress of PAHs on rice by reducing malondialdehyde (MDA) content and increasing total antioxidant capacity (T-AOC). Periphyton reduced the toxic stress of PAHs on the soil by promoting soil carbon cycling and metabolic activities as well. Periphyton also improved the soil's physicochemical properties, such as the percentage of soil aggregate, the contents of humic substances (HSs) and nutrients, which increased rice biomass. These findings confirmed that periphyton could improve rice productivity by enhancing soil quality and health. This study provides a new eco-friendly strategy for soil remediation and simultaneously enables the production of safe crops on contaminated land.


Subject(s)
Neoplasms , Periphyton , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Humans , Polycyclic Aromatic Hydrocarbons/metabolism , Soil/chemistry , Humic Substances , Soil Pollutants/analysis
17.
NPJ Aging ; 10(1): 1, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167843

ABSTRACT

One critical manifestation of neurological deterioration is the sign of cognitive decline. Causes of cognitive decline include but are not limited to: aging, cerebrovascular disease, Alzheimer's disease, and trauma. Currently, the primary tool used to examine cognitive decline is scale. However, scale examination has drawbacks such as its clinician subjectivity and inconsistent results. This study attempted to use resting-state EEG to construct a cognitive assessment model that is capable of providing a more scientific and robust evaluation on cognition levels. In this study, 75 healthy subjects, 99 patients with Mild Cognitive Impairment (MCI), and 78 patients with dementia were involved. Their resting-state EEG signals were collected twice, and the recording devices varied. By matching these EEG and traditional scale results, the proposed cognition assessment model was trained based on Adaptive Boosting (AdaBoost) and Support Vector Machines (SVM) methods, mapping subjects' cognitive levels to a 0-100 test score with a mean error of 4.82 (<5%). This study is the first to establish a continuous evaluation model of cognitive decline on a large sample dataset. Its cross-device usability also suggests universality and robustness of this EEG model, offering a more reliable and affordable way to assess cognitive decline for clinical diagnosis and treatment as well. Furthermore, the interpretability of features involved may further contribute to the early diagnosis and superior treatment evaluation of Alzheimer's disease.

18.
IEEE Trans Biomed Eng ; 71(2): 553-562, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37756179

ABSTRACT

OBJECTIVE: Since single brain computer interface (BCI) is limited in performance, it is necessary to develop collaborative BCI (cBCI) systems which integrate multi-user electroencephalogram (EEG) information to improve system performance. However, there are still some challenges in cBCI systems, including effective discriminant feature extraction of multi-user EEG data, fusion algorithms, time reduction of system calibration, etc. Methods: This study proposed an event-related potential (ERP) feature extraction and classification algorithm of spatio-temporal weighting and correlation analysis (STC) to improve the performance of cBCI systems. The proposed STC algorithm consisted of three modules. First, source extraction and interval modeling were used to overcome the problem of inter-trial variability. Second, spatio-temporal weighting and temporal projection were utilized to extract effective discriminant features for multi-user information fusion and cross-session transfer. Third, correlation analysis was conducted to match target/non-target templates for classification of multi-user and cross-session datasets. RESULTS: The collaborative cross-session datasets of rapid serial visual presentation (RSVP) from 14 subjects were used to evaluate the performance of the EEG classification algorithm. For single-user/collaborative EEG classification of within-session and cross-session datasets, STC had significantly higher performance than the existing state-of-the-art machine learning algorithms. CONCLUSION: It was demonstrated that STC was effective to improve the classification performance of multi-user collaboration and cross-session transfer for RSVP-based BCI systems, and was helpful to reduce the system calibration time.


Subject(s)
Brain-Computer Interfaces , Humans , Signal Processing, Computer-Assisted , Electroencephalography , Evoked Potentials , Algorithms
19.
Int Ophthalmol ; 43(12): 4631-4638, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37747671

ABSTRACT

OBJECTIVES: This bibliometric analysis aimed to clarify research characteristics and trends in research on uveitis by analyzing the top 100 most-cited articles. METHODS: We used the Web of Science database to search articles published in English from January 1, 1950, to February 10, 2022, without other restrictions. The 100 most-cited articles related to uveitis were screened. The publication year, institution, author, journal, country, research topic, and research type of each article were analyzed. RESULTS: The citations of the top 100 articles ranged from 144 to 2292 times. The years 2004 and 2005 included the largest number of articles published, with 17 in total. Most of the papers were published in Ophthalmology (n = 19), a specialized ophthalmology journal. The top 100 articles originated from 14 countries, with the most from the USA (n = 44). Twenty research institutions and 18 authors contributed two or more articles, with the National Eye Institute (USA) (n = 10) and Robert B. Nussenblatt (n = 10) contributing the most. The types of studies were mainly clinical studies (n = 64), focusing on the treatment of uveitis (n = 36). CONCLUSION: This study summarizes and analyzes the research characteristics and trends of uveitis. The contribution of the USA is explained, the past and current treatments of uveitis are emphasized, and the directions of future research are clarified.


Subject(s)
Bibliometrics , Uveitis , Humans
20.
Sci Rep ; 13(1): 15839, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37739947

ABSTRACT

For high-level automated vehicles, the human being acts as the passenger instead of the driver and does not need to operate vehicles, it makes the brain-computer interface system of high-level automated vehicles depend on the brain state of passengers rather than that of drivers. Particularly when confronting challenging driving situations, how to implement the mental states of passengers into safe driving is a vital choice in the future. Quantifying the cognition of the driving risk of the passenger is a basic step in achieving this goal. In this paper, the passengers' mental activities in low-risk episode and high-risk episode were compared, the influences on passengers' mental activities caused by driving scenario risk was first explored via fNIRS. The results showed that the mental activities of passengers caused by driving scenario risk in the Brodmann area 10 are very active, which was verified by examining the real-driving data collected in corresponding challenging experiments, and there is a positive correlation between the cerebral oxygen and the driving risk field. This initial finding provides a possible solution to design a human-centred intelligent system to promise safe driving for high-level automated vehicles using passengers' driving risk cognition.


Subject(s)
Cognition , Prefrontal Cortex , Humans , Brain , Spectrum Analysis , Autonomous Vehicles
SELECTION OF CITATIONS
SEARCH DETAIL