Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 87(1): 57, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587527

ABSTRACT

Understanding the intricate ecological interactions within the gut microbiome and unravelling its impact on human health is a challenging task. Bioreactors are valuable tools that have contributed to our understanding of gut microbial ecology. However, there is a lack of studies describing and comparing the microbial diversity cultivated in these models. This knowledge is crucial for refining current models to reflect the gastrointestinal microbiome accurately. In this study, we analysed the microbial diversity of 1512 samples from 18 studies available in public repositories that employed cultures performed in batches and various bioreactor models to cultivate faecal microbiota. Community structure comparison between samples using t-distributed stochastic neighbour embedding and the Hellinger distance revealed a high variation between projects. The main driver of these differences was the inter-individual variation between the donor faecal inocula. Moreover, there was no overlap in the structure of the microbial communities between studies using the same bioreactor platform. In addition, α-diversity analysis using Hill numbers showed that highly complex bioreactors did not exhibit higher diversities than simpler designs. However, analyses of five projects in which the samples from the faecal inoculum were also provided revealed an amplicon sequence variants enrichment in bioreactors compared to the inoculum. Finally, a comparative analysis of the taxonomy of the families detected in the projects and the GMRepo database revealed bacterial families exclusively found in the bioreactor models. These findings highlight the potential of bioreactors to enrich low-abundance microorganisms from faecal samples, contributing to uncovering the gut microbial "dark matter".


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Bioreactors , Feces
2.
J Agric Food Chem ; 71(16): 6213-6225, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37070710

ABSTRACT

Since the early 1980s, multiple researchers have contributed to the development of in vitro models of the human gastrointestinal system for the mechanistic interrogation of the gut microbiome ecology. Using a bioreactor for simulating all the features and conditions of the gastrointestinal system is a massive challenge. Some conditions, such as temperature and pH, are readily controlled, but a more challenging feature to simulate is that both may vary in different regions of the gastrointestinal tract. Promising solutions have been developed for simulating other functionalities, such as dialysis capabilities, peristaltic movements, and biofilm growth. This research field is under constant development, and further efforts are needed to drive these models closer to in vivo conditions, thereby increasing their usefulness for studying the gut microbiome impact on human health. Therefore, understanding the influence of key operational parameters is fundamental for the refinement of the current bioreactors and for guiding the development of more complex models. In this review, we performed a systematic search for operational parameters in 229 papers that used continuous bioreactors seeded with human feces. Despite the reporting of operational parameters for the various bioreactor models being variable, as a result of a lack of standardization, the impact of specific operational parameters on gut microbial ecology is discussed, highlighting the advantages and limitations of the current bioreactor systems.


Subject(s)
Gastrointestinal Microbiome , Humans , Feces , Gastrointestinal Tract , Bioreactors
3.
Microorganisms ; 10(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35889041

ABSTRACT

Klebsiella pneumoniae is a pathogenic agent able to form biofilms on water storage tanks and pipe walls. This opportunistic pathogen can generate a thick layer as one of its essential virulence factors, enabling the bacteria to survive disinfection processes and thus develop drug resistance. Understanding the metabolic differences between biofilm and planktonic cells of the K. pneumoniae response to NaClO is key to developing strategies to control its spread. In this study, we performed an NMR metabolic profile analysis to compare the response to a sublethal concentration of sodium hypochlorite of biofilm and planktonic cells of K. pneumoniae cultured inside silicone tubing. Metabolic profiles revealed changes in the metabolism of planktonic cells after a contact time of 10 min with 7 mg L-1 of sodium hypochlorite. A decrease in the production of metabolites such as lactate, acetate, ethanol, and succinate in this cell type was observed, thus indicating a disruption of glucose intake. In contrast, the biofilms displayed a high metabolic heterogeneity, and the treatment did not affect their metabolic signature.

SELECTION OF CITATIONS
SEARCH DETAIL
...