Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 32(7): e2645, 2022 10.
Article in English | MEDLINE | ID: mdl-35474622

ABSTRACT

Climate change predicts the increased frequency, duration, and intensity of inclement weather periods such as unseasonably low temperatures (i.e., cold snaps) and prolonged precipitation. Many migratory species have advanced the phenology of important life history stages and, as a result, are likely to be exposed to these periods of inclement spring weather more often, therefore risking reduced fitness and population growth. For declining avian species, including aerial insectivores, anthropogenic landscape changes such as agricultural intensification are another driver of population declines. These landscape changes may affect the foraging ability of food provisioning parents and reduce the survival of nestlings exposed to inclement weather through, for example, pesticide exposure impairing thermoregulation and punctual anorexia. Breeding in agro-intensive landscapes may therefore exacerbate the negative effects of inclement weather under climate change. We observed that a significant reduction in the availability of insect prey occurred when daily maximum temperatures fell below 18.3°C, and thereby defined any day when the maximum temperature fell below this value as a day witnessing a cold snap. We then combined daily information on the occurrence of cold snaps and measures of precipitation to assess their impact on the fledging success of Tree Swallows (Tachycineta bicolor) occupying a nest box system placed across a gradient of agricultural intensification. Estimated fledging success of this declining aerial insectivore was 36.2% lower for broods experiencing 4 cold-snap days during the 12 days post-hatching period versus broods experiencing none, and this relationship was worsened when facing more precipitation. We further found that the overall negative effects of a brood experiencing periods of inclement weather was exacerbated in more agro-intensive landscapes. Our results indicate that two of the primary hypothesized drivers of many avian population declines may interact to further increase the rate of declines in certain landscape contexts.


Subject(s)
Pesticides , Swallows , Agriculture , Animals , Rain , Swallows/physiology , Weather
2.
Ecol Appl ; 31(7): e02415, 2021 10.
Article in English | MEDLINE | ID: mdl-34278650

ABSTRACT

In the context of increasing global environmental changes, it has become progressively important to understand the effects of human activity on wildlife populations. Declines in several avian populations have been observed since the 1970s, especially with respect to many farmland and grassland birds, which also include some aerial insectivores. Changes in farming practices referred to as agricultural intensification coincide with these major avian declines. Among those practices, increased pesticide use is hypothesized to be a key driver of avian population declines as it can lead to both toxicological and trophic effects. While numerous laboratory studies report that birds experience acute and chronic effects upon consuming pesticide treated food, little is known about the effects of the exposure to multiple pesticides on wildlife in natural settings. We monitored the breeding activities of Tree Swallows (Tachycineta bicolor) on 40 farms distributed over a gradient of agricultural intensification in southern Québec, Canada, to evaluate the presence of pesticides in their diet and quantify the exposure effects of those compounds on their reproductive performance between 2013 and 2018. We first assessed the presence of 54 active agents (or derivatives) found in pesticides in 2,081 food boluses (insects) delivered to nestlings by parents and documented their spatial distribution within our study area. Second, we assessed the effect of pesticide exposure through food (number of active agents detected and number of contaminated boluses on a given farm for a given year, while controlling for sampling effort) on clutch size as well as hatching and fledging successes and nestling's mass upon fledging. Pesticides were ubiquitous in our study system and nearly half (46%) of food boluses were contaminated by at least one active agent. Yet we found no relationship between our proxies of food contamination by pesticides and Tree Swallow reproductive performance. More studies are needed to better understand the putative role of pesticides in the decline of farmland birds and aerial insectivores as potential sublethal effects of pesticides can carry over to later life stages and impact fitness.


Subject(s)
Pesticides , Swallows , Agriculture , Animals , Food , Humans , Pesticides/toxicity , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...