Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stress ; 27(1): 2357330, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38775373

ABSTRACT

Why individuals suffer negative consequences following stress is a complex phenomenon that is dictated by individual factors, the timing of stress within the lifespan, and when in the lifespan the consequences are measured. Women who undergo adverse childhood experiences are at risk for lasting biological consequences, including affective and stress dysregulation. We have shown that pubertal adversity is associated with a blunted hypothalamic-pituitary-adrenal axis glucocorticoid response in peripartum humans and mice. In mice, our prior examination of the paraventricular nucleus (PVN) of the hypothalamus showed that pubertal stress led to an upregulation of baseline mRNA expression of six immediate early genes (IEGs) in the PVN of adult, pregnant mice. Separately, we showed that the pregnancy-associated hormone allopregnanolone is necessary and sufficient to produce the blunted stress response phenotype in pubertally stressed mice. In the current study, we further examined a potential mechanistic role for the IEGs in the PVN. We found that in pubertally stressed adult female, but not male, mice, intra-PVN allopregnanolone was sufficient to recapitulate the baseline IEG mRNA expression profile previously observed in pubertally stressed, pregnant mice. We also examined baseline IEG mRNA expression during adolescence, where we found that IEGs have developmental trajectories that showed sex-specific disruption by pubertal stress. Altogether, these data establish that IEGs may act as a key molecular switch involved in increased vulnerability to negative outcomes in adult, pubertally stressed animals. How the factors that produce vulnerability combine throughout the lifespan is key to our understanding of the etiology of stress-related disorders.


Subject(s)
Paraventricular Hypothalamic Nucleus , Stress, Psychological , Transcriptome , Animals , Female , Male , Mice , Stress, Psychological/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Pregnanolone , Hypothalamus/metabolism , Hypothalamus/drug effects , Pregnancy , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/drug effects , Sexual Maturation , Genes, Immediate-Early
2.
bioRxiv ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37873227

ABSTRACT

Why individuals have negative consequences following stress is a complex phenomenon that is dictated by individual factors, the timing of stress within the lifespan, and when the consequences are measured. Women who undergo adverse childhood experiences are at risk for lasting biological consequences, including affective and stress dysregulation. We have shown that pubertal adversity is associated with a blunted glucocorticoid response within the hypothalamic-pituitary-adrenal axis in both peripartum humans and mice. In mice, we examined puberty-stress reprogramming in the paraventricular nucleus (PVN) of the hypothalamus, which initiates the HPA axis response. We found that pubertal stress led to an upregulation of six immediate early genes (IEGs) in the PVN of adult, pregnant mice. Separately, we showed that the pregnancy-associated hormone allopregnanolone is necessary and sufficient to produce the blunted stress response phenotype in pubertally stressed mice. Here, we examined the response of the IEGs in the PVN to the primary disruption of pubertal stress in early adolescence and to the secondary disruption of increased allopregnanolone in pregnancy. We found that in adult female, but not male, mice previously stressed during puberty, intra-PVN allopregnanolone was sufficient to recapitulate the pubertal stress associated baseline IEG expression profile. We also examined baseline IEG expression during adolescence, where we found that IEGs have sex-specific developmental trajectories that were disrupted by pubertal stress. Altogether, these data establish that IEGs can act as a key molecular switch that leads to increased vulnerability to negative outcomes in adult, pubertally stressed animals. Understanding how the factors that produce vulnerability combine throughout the lifespan will further our understanding of the etiology of negative outcomes and will help guide both the nature and timing of potential treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...