Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Plant Cell Physiol ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39324423

ABSTRACT

Speciation is the process leading to the emergence of new species. While being usually progressive, it can sometimes be fast with rapid emergence of reproductive barriers leading to high level of reproductive isolation. Some reproductive barriers might leave signatures in the genome, through elevated level of genetic differentiation at specific loci. Similar signatures might also be the results of linked selection acting in low recombination regions. Nottingham catchfly (Silene nutans) is a Caryophyllaceae species composed of four genetically differentiated lineages for which strong and asymmetric levels of reproductive isolation have been identified. Using population transcriptomic data from several individuals of the four lineages, we inferred the best evo-demographic scenario leading to the current reproductive isolation of these four lineages. We also tested whether loci exhibiting high level of genetic differentiation represented barrier loci or were located in low recombination regions, evolving under strong influence of linked selection. Overall, the four lineages of S. nutans have diverged in strict isolation, likely during the different glacial period, through migration in distinct glacial refugia. Speciation between these four lineages appeared to be particularly fast, likely due to fast evolving plastid genome accelerating plastid-nuclear co-evolution and the probability of plastid-nuclear incompatibilities in inter-lineage hybrids.

2.
Elife ; 132024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222005

ABSTRACT

The long-term balancing selection acting on mating types or sex-determining genes is expected to lead to the accumulation of deleterious mutations in the tightly linked chromosomal segments that are locally 'sheltered' from purifying selection. However, the factors determining the extent of this accumulation are poorly understood. Here, we took advantage of variations in the intensity of balancing selection along a dominance hierarchy formed by alleles at the sporophytic self-incompatibility system of the Brassicaceae to compare the pace at which linked deleterious mutations accumulate among them. We first experimentally measured the phenotypic manifestation of the linked load at three different levels of the dominance hierarchy. We then sequenced and phased polymorphisms in the chromosomal regions linked to 126 distinct copies of S-alleles in two populations of Arabidopsis halleri and three populations of Arabidopsis lyrata. We find that linkage to the S-locus locally distorts phylogenies over about 10-30 kb along the chromosome. The more intense balancing selection on dominant S-alleles results in greater fixation of linked deleterious mutations, while recessive S-alleles accumulate more linked deleterious mutations that are segregating. Hence, the structure rather than the overall magnitude of the linked genetic load differs between dominant and recessive S-alleles. Our results have consequences for the long-term evolution of new S-alleles, the evolution of dominance modifiers between them, and raise the question of why the non-recombining regions of some sex and mating type chromosomes expand over evolutionary times while others, such as the S-locus of the Brassicaceae, remain restricted to small chromosomal regions.


Subject(s)
Alleles , Arabidopsis , Arabidopsis/genetics , Selection, Genetic , Self-Incompatibility in Flowering Plants/genetics , Genetic Load , Mutation , Genes, Dominant , Phenotype
3.
Evol Lett ; 8(4): 550-560, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39100231

ABSTRACT

The shift from outcrossing to self-fertilization is one of the main evolutionary transitions in plants and has broad effects on evolutionary trajectories. In Brassicaceae, the ability to inhibit self-fertilization is controlled by 2 genes, SCR and SRK, tightly linked within the S-locus. A series of small non-coding RNAs also encoded within the S-locus regulates the transcriptional activity of SCR alleles, resulting in a linear dominance hierarchy between them. In Brassicaceae, natural allopolyploid species are often self-compatible (SC) even when one of the progenitor species is self-incompatible, but the reason why polyploid lineages tend to lose self-incompatibility (SI) and the timing of the loss of SI (immediately after ancestral hybridization between the progenitor species, or at a later stage after the formation of allopolyploid lineages) have generally remained elusive. We used a series of synthetic diploid and tetraploid hybrids obtained between self-fertilizing Capsella orientalis and outcrossing Capsella grandiflora to test whether the breakdown of SI could be observed immediately after hybridization, and whether the occurrence of SC phenotypes could be explained by the dominance interactions between S-haplotypes inherited from the parental lineages. We used RNA-sequencing data from young inflorescences to measure allele-specific expression of the SCR gene and infer dominance interactions in the synthetic hybrids. We then evaluated the seed set from autonomous self-pollination in the synthetic hybrids. Our results demonstrate that self-compatibility of the hybrids depends on the relative dominance between S-alleles inherited from the parental species, confirming that SI can be lost instantaneously upon formation of the ancestral allopolyploid lineage. They also confirm that the epigenetic regulation that controls dominance interactions between S-alleles can function between subgenomes in allopolyploids. Together, our results illustrate how a detailed knowledge of the mechanisms controlling SI can illuminate our understanding of the patterns of co-variation between the mating system and changes in ploidy.

4.
Mol Biol Evol ; 40(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37210585

ABSTRACT

Balancing selection is a form of natural selection maintaining diversity at the sites it targets and at linked nucleotide sites. Due to selection favoring heterozygosity, it has the potential to facilitate the accumulation of a "sheltered" load of tightly linked recessive deleterious mutations. However, precisely evaluating the extent of these effects has remained challenging. Taking advantage of plant self-incompatibility as one of the best-understood examples of long-term balancing selection, we provide a highly resolved picture of the genomic extent of balancing selection on the sheltered genetic load. We used targeted genome resequencing to reveal polymorphism of the genomic region flanking the self-incompatibility locus in three sample sets in each of the two closely related plant species Arabidopsis halleri and Arabidopsis lyrata, and used 100 control regions from throughout the genome to factor out differences in demographic histories and/or sample structure. Nucleotide polymorphism increased strongly around the S-locus in all sample sets, but only over a limited genomic region, as it became indistinguishable from the genomic background beyond the first 25-30 kb. Genes in this chromosomal interval exhibited no excess of mutations at 0-fold degenerated sites relative to putatively neutral sites, hence revealing no detectable weakening of the efficacy of purifying selection even for these most tightly linked genes. Overall, our results are consistent with the predictions of a narrow genomic influence of linkage to the S-locus and clarify how natural selection in one genomic region affects the evolution of the adjacent genomic regions.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Genetic Load , Polymorphism, Genetic , Selection, Genetic , Nucleotides
5.
Mol Ecol Resour ; 23(3): 659-679, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36349833

ABSTRACT

Despite the increasing accessibility of high-throughput sequencing, obtaining high-quality genomic data on non-model organisms without proximate well-assembled and annotated genomes remains challenging. Here, we describe a workflow that takes advantage of distant genomic resources and ingroup transcriptomes to select and jointly enrich long open reading frames (ORFs) and ultraconserved elements (UCEs) from genomic samples for integrative studies of microevolutionary and macroevolutionary dynamics. This workflow is applied to samples of the African unionid bivalve tribe Coelaturini (Parreysiinae) at basin and continent-wide scales. Our results indicate that ORFs are efficiently captured without prior identification of intron-exon boundaries. The enrichment of UCEs was less successful, but nevertheless produced substantial data sets. Exploratory continent-wide phylogenetic analyses with ORF supercontigs (>515,000 parsimony informative sites) resulted in a fully resolved phylogeny, the backbone of which was also retrieved with UCEs (>11,000 informative sites). Variant calling on ORFs and UCEs of Coelaturini from the Malawi Basin produced ~2000 SNPs per population pair. Estimates of nucleotide diversity and population differentiation were similar for ORFs and UCEs. They were low compared to previous estimates in molluscs, but comparable to those in recently diversifying Malawi cichlids and other taxa at an early stage of speciation. Skimming off-target sequence data from the same enriched libraries of Coelaturini from the Malawi Basin, we reconstructed the maternally-inherited mitogenome, which displays the gene order inferred for the most recent common ancestor of Unionidae. Overall, our workflow and results provide exciting perspectives for integrative genomic studies of microevolutionary and macroevolutionary dynamics in non-model organisms.


Subject(s)
Genome , Genomics , Phylogeny , Open Reading Frames , Exons
6.
Mol Biol Evol ; 38(5): 1820-1836, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33480994

ABSTRACT

During range expansion, edge populations are expected to face increased genetic drift, which in turn can alter and potentially compromise adaptive dynamics, preventing the removal of deleterious mutations and slowing down adaptation. Here, we contrast populations of the European subspecies Arabidopsis lyrata ssp. petraea, which expanded its Northern range after the last glaciation. We document a sharp decline in effective population size in the range-edge population and observe that nonsynonymous variants segregate at higher frequencies. We detect a 4.9% excess of derived nonsynonymous variants per individual in the range-edge population, suggesting an increase of the genomic burden of deleterious mutations. Inference of the fitness effects of mutations and modeling of allele frequencies under the explicit demographic history of each population predicts a depletion of rare deleterious variants in the range-edge population, but an enrichment for fixed ones, consistent with the bottleneck effect. However, the demographic history of the range-edge population predicts a small net decrease in per-individual fitness. Consistent with this prediction, the range-edge population is not impaired in its growth and survival measured in a common garden experiment. We further observe that the allelic diversity at the self-incompatibility locus, which ensures strict outcrossing and evolves under negative frequency-dependent selection, has remained unchanged. Genomic footprints indicative of selective sweeps are broader in the Northern population but not less frequent. We conclude that the outcrossing species A. lyrata ssp. petraea shows a strong resilience to the effect of range expansion.


Subject(s)
Arabidopsis/genetics , Genetic Load , Plant Dispersal , Gene Flow , Genes, Recessive , Genetic Fitness , Genome, Plant , Population Dynamics , Selection, Genetic
7.
Evol Appl ; 13(6): 1279-1297, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32684959

ABSTRACT

Self-incompatibility (SI) is a self-recognition genetic system enforcing outcrossing in hermaphroditic flowering plants and results in one of the arguably best understood forms of natural (balancing) selection maintaining genetic variation over long evolutionary times. A rich theoretical and empirical population genetics literature has considerably clarified how the distribution of SI phenotypes translates into fitness differences among individuals by a combination of inbreeding avoidance and rare-allele advantage. At the same time, the molecular mechanisms by which self-pollen is specifically recognized and rejected have been described in exquisite details in several model organisms, such that the genotype-to-phenotype map is also pretty well understood, notably in the Brassicaceae. Here, we review recent advances in these two fronts and illustrate how the joint availability of detailed characterization of genotype-to-phenotype and phenotype-to-fitness maps on a single genetic system (plant self-incompatibility) provides the opportunity to understand the evolutionary process in a unique perspective, bringing novel insight on general questions about the emergence, maintenance, and diversification of a complex genetic system.

8.
Mol Biol Evol ; 37(4): 1193-1201, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31688901

ABSTRACT

Plant self-incompatibility (SI) is a genetic system that prevents selfing and enforces outcrossing. Because of strong balancing selection, the genes encoding SI are predicted to maintain extraordinarily high levels of polymorphism, both in terms of the number of functionally distinct S-alleles that segregate in SI species and in terms of their nucleotide sequence divergence. However, because of these two combined features, documenting polymorphism of these genes also presents important methodological challenges that have so far largely prevented the comprehensive analysis of complete allelic series in natural populations, and also precluded the obtention of complete genic sequences for many S-alleles. Here, we develop a powerful methodological approach based on a computationally optimized comparison of short Illumina sequencing reads from genomic DNA to a database of known nucleotide sequences of the extracellular domain of SRK (eSRK). By examining mapping patterns along the reference sequences, we obtain highly reliable predictions of S-genotypes from individuals collected from natural populations of Arabidopsis halleri. Furthermore, using a de novo assembly approach of the filtered short reads, we obtain full-length sequences of eSRK even when the initial sequence in the database was only partial, and we discover putative new SRK alleles that were not initially present in the database. When including those new alleles in the reference database, we were able to resolve the complete diploid SI genotypes of all individuals. Beyond the specific case of Brassicaceae S-alleles, our approach can be readily applied to other polymorphic loci, given reference allelic sequences are available.


Subject(s)
Arabidopsis/genetics , Genotyping Techniques , Self-Incompatibility in Flowering Plants/genetics , Alleles
9.
Nat Plants ; 4(11): 879-887, 2018 11.
Article in English | MEDLINE | ID: mdl-30390080

ABSTRACT

Plant genomes are often characterized by a high level of repetitiveness and polyploid nature. Consequently, creating genome assemblies for plant genomes is challenging. The introduction of short-read technologies 10 years ago substantially increased the number of available plant genomes. Generally, these assemblies are incomplete and fragmented, and only a few are at the chromosome scale. Recently, Pacific Biosciences and Oxford Nanopore sequencing technologies were commercialized that can sequence long DNA fragments (kilobases to megabase) and, using efficient algorithms, provide high-quality assemblies in terms of contiguity and completeness of repetitive regions1-4. However, even though genome assemblies based on long reads exhibit high contig N50s (>1 Mb), these methods are still insufficient to decipher genome organization at the chromosome level. Here, we describe a strategy based on long reads (MinION or PromethION sequencers) and optical maps (Saphyr system) that can produce chromosome-level assemblies and demonstrate applicability by generating high-quality genome sequences for two new dicotyledon morphotypes, Brassica rapa Z1 (yellow sarson) and Brassica oleracea HDEM (broccoli), and one new monocotyledon, Musa schizocarpa (banana). All three assemblies show contig N50s of >5 Mb and contain scaffolds that represent entire chromosomes or chromosome arms.


Subject(s)
Brassica rapa/genetics , Brassica/genetics , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Genome, Plant/genetics , Nanopores , High-Throughput Nucleotide Sequencing/methods , Optics and Photonics/methods , Repetitive Sequences, Nucleic Acid/genetics
10.
Biochim Biophys Acta ; 1828(11): 2399-409, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23791703

ABSTRACT

Several Cl(-) channels have been described in the native renal tubule, but their correspondence with ClC-K1 and ClC-K2 channels (orthologs of human ClC-Ka and ClC-Kb), which play a major role in transcellular Cl(-) absorption in the kidney, has yet to be established. This is partly because investigation of heterologous expression has involved rat or human ClC-K models, whereas characterization of the native renal tubule has been done in mice. Here, we investigate the electrophysiological properties of mouse ClC-K1 channels heterologously expressed in Xenopus laevis oocytes and in HEK293 cells with or without their accessory Barttin subunit. Current amplitudes and plasma membrane insertion of mouse ClC-K1 were enhanced by Barttin. External basic pH or elevated calcium stimulated currents followed the anion permeability sequence Cl(-)>Br(-)>NO3(-)>I(-). Single-channel recordings revealed a unit conductance of ~40pS. Channel activity in cell-attached patches increased with membrane depolarization (voltage for half-maximal activation: ~-65mV). Insertion of the V166E mutation, which introduces a glutamate in mouse ClC-K1, which is crucial for channel gating, reduced the unit conductance to ~20pS. This mutation shifted the depolarizing voltage for half-maximal channel activation to ~+25mV. The unit conductance and voltage dependence of wild-type and V166E ClC-K1 were not affected by Barttin. Owing to their strikingly similar properties, we propose that the ClC-K1/Barttin complex is the molecular substrate of a chloride channel previously detected in the mouse thick ascending limb (Paulais et al., J Membr. Biol, 1990, 113:253-260).


Subject(s)
Chloride Channels/metabolism , Animals , HEK293 Cells , Humans , Kidney Tubules/metabolism , Patch-Clamp Techniques , Recombinant Proteins/metabolism , Xenopus laevis
11.
Hum Mutat ; 32(4): 476-83, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21305656

ABSTRACT

Mutations in the electrogenic Cl(-)/H(+) exchanger ClC-5 gene CLCN5 are frequently associated with Dent disease, an X-linked recessive disorder affecting the proximal tubules. Here, we investigate the consequences in Xenopus laevis oocytes and in HEK293 cells of nine previously reported, pathogenic, missense mutations of ClC-5, most of them which are located in regions forming the subunit interface. Two mutants trafficked normally to the cell surface and to early endosomes, and displayed complex glycosylation at the cell surface like wild-type ClC-5, but exhibited reduced currents. Three mutants displayed improper N-glycosylation, and were nonfunctional due to being retained and degraded at the endoplasmic reticulum. Functional characterization of four mutants allowed us to identify a novel mechanism leading to ClC-5 dysfunction in Dent disease. We report that these mutant proteins were delayed in their processing, and that the stability of their complex glycosylated form was reduced, causing lower cell surface expression. The early endosome distribution of these mutants was normal. Half of these mutants displayed reduced currents, whereas the other half showed abolished currents. Our study revealed distinct cellular mechanisms accounting for ClC-5 loss of function in Dent disease.


Subject(s)
Chloride Channels/genetics , Dent Disease/genetics , Mutation , Amino Acid Sequence , Animals , Cells, Cultured , Chloride Channels/metabolism , Dent Disease/metabolism , HEK293 Cells , Humans , Kidney Tubules, Proximal/metabolism , Molecular Sequence Data , Oocytes/metabolism , Sequence Alignment , Xenopus laevis
12.
Physiol Genomics ; 43(3): 161-73, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21081658

ABSTRACT

To gain molecular insight into kidney function, we performed a high-resolution quantitative analysis of gene expression in glomeruli and nine different nephron segments dissected from mouse kidney using Serial Analysis of Gene Expression (SAGE). We also developed dedicated bioinformatics tools and databases to annotate mRNA tags as transcripts. Over 800,000 mRNA SAGE tags were sequenced corresponding to >20,000 different mRNA tags present at least twice in at least one library. Hierarchical clustering analysis of tags demonstrated similarities between the three anatomical subsegments of the proximal tubule, between the cortical and medullary segments of the thick ascending limb of Henle's loop, and between the three segments constituting the aldosterone-sensitive distal nephron segments, whereas the glomerulus and distal convoluted tubule clusterized independently. We also identified highly specific mRNA markers of each subgroup of nephron segments and of most nephron segments. Tag annotation also identified numbers of putative antisense mRNAs. This database constitutes a reference resource in which the quantitative expression of a given gene can be compared with that of other genes in the same nephron segment, or between different segments of the nephron. To illustrate possible applications of this database, we performed a deeper analysis of the glomerulus transcriptome that unexpectedly revealed expression of several ion and water carriers; within the glomerulus, they were found to be preferentially expressed in the parietal sheet. It also revealed the major role of the zinc finger transcription factor Wt1 in the specificity of gene expression in the glomerulus. Finally, functional annotation of glomerulus-specific transcripts suggested a high proliferation activity of glomerular cells. Immunolabeling for PCNA confirmed a high percentage of proliferating cells in the glomerulus parietal sheet.


Subject(s)
Gene Expression Profiling , Kidney Glomerulus/cytology , Kidney Glomerulus/metabolism , Animals , Biomarkers/metabolism , Bowman Capsule/cytology , Bowman Capsule/metabolism , Cell Proliferation , Cluster Analysis , Databases, Genetic , Gene Expression Regulation , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Organ Specificity/genetics , Proliferating Cell Nuclear Antigen/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , WT1 Proteins/genetics , WT1 Proteins/metabolism
13.
Kidney Int ; 76(9): 999-1005, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19657328

ABSTRACT

Dent's disease is an X-linked recessive disorder affecting the proximal tubules and is frequently associated with mutations in CLCN5, which encodes the electrogenic chloride-proton exchanger ClC-5. To better understand the functional consequences of CLCN5 mutations in this disease, we screened four newly identified missense mutations (G179D, S203L, G212A, L469P), one new nonsense mutation (R718X), and three known mutations (L200R, C219R, and C221R), in Xenopus laevis oocytes and HEK293 cells expressing either wild-type or mutant exchanger. A type-I mutant (G212A) trafficked normally to the cell surface and to early endosomes, underwent complex glycosylation at the cell surface like wild-type ClC-5, but exhibited significant reductions in outwardly rectifying ion currents. The type-II mutants (G179D, L200R, S203L, C219R, C221R, L469P, and R718X) were improperly N-glycosylated and were non-functional due to retention in the endoplasmic reticulum. Thus these mutations have distinct mechanisms by which they could impair ClC-5 function in Dent's disease.


Subject(s)
Chloride Channels/genetics , Chlorides/metabolism , Codon, Nonsense , Kidney Diseases/genetics , Kidney Tubules, Proximal/metabolism , Mutation, Missense , Amino Acid Sequence , Animals , Biological Transport/genetics , Cell Line , Cell Membrane/metabolism , Child , Child, Preschool , Chloride Channels/metabolism , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Genetic Predisposition to Disease , Glycosylation , Humans , Infant , Kidney Diseases/metabolism , Membrane Potentials , Microinjections , Molecular Sequence Data , Phenotype , Protein Processing, Post-Translational , Protein Transport , Risk Factors , Transfection , Xenopus laevis
14.
Am J Physiol Renal Physiol ; 294(6): F1398-407, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18367659

ABSTRACT

K(+) channels in the basolateral membrane of mouse cortical collecting duct (CCD) principal cells were identified with patch-clamp technique, real-time PCR, and immunohistochemistry. In cell-attached membrane patches, three K(+) channels with conductances of approximately 75, 40, and 20 pS were observed, but the K(+) channel with the intermediate conductance (40 pS) predominated. In inside-out membrane patches exposed to an Mg(2+)-free medium, the current-voltage relationship of the intermediate-conductance channel was linear with a conductance of 38 pS. Addition of 1.3 mM internal Mg(2+) had no influence on the inward conductance (G(in) = 35 pS) but reduced outward conductance (G(out)) to 13 pS, yielding a G(in)/G(out) of 3.2. The polycation spermine (6 x 10(-7) M) reduced its activity on inside-out membrane patches by 50% at a clamp potential of 60 mV. Channel activity was also dependent on intracellular pH (pH(i)): a sigmoid relationship between pH(i) and channel normalized current (NP(o)) was observed with a pK of 7.24 and a Hill coefficient of 1.7. By real-time PCR on CCD extracts, inwardly rectifying K(+) (Kir)4.1 and Kir5.1, but not Kir4.2, mRNAs were detected. Kir4.1 and Kir5.1 proteins cellularly colocalized with aquaporin 2 (AQP2), a specific marker of CCD principal cells, while AQP2-negative cells (i.e., intercalated cells) showed no staining. Dietary K(+) had no influence on the properties of the intermediate-conductance channel, but a Na(+)-depleted diet increased its open probability by approximately 25%. We conclude that the Kir4.1/Kir5.1 channel is a major component of the K(+) conductance in the basolateral membrane of mouse CCD principal cells.


Subject(s)
Cell Polarity/physiology , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/physiology , Potassium Channels, Inwardly Rectifying/physiology , Animals , Cloning, Molecular , Immunohistochemistry , In Vitro Techniques , Kidney Cortex/physiology , Male , Mice , Mice, Inbred Strains , Models, Biological , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/genetics , Potassium, Dietary/pharmacokinetics , RNA, Messenger/metabolism , Sodium, Dietary/pharmacokinetics , Kir5.1 Channel
15.
AIDS Res Hum Retroviruses ; 21(7): 620-8, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16060833

ABSTRACT

Most HIV vaccine trials in the world are conducted with clade B while most circulating viral strains in Africa are non-B subtypes. We determined whether CD8+ T cells from HIV-1 intersubtype CRF02_AG-infected Ivorian individuals were able to recognize clade B epitopes. CD8+ T cell responses of nine HIV-1 intersubtype CRF02_AG-infected Ivorian patients and nine HIV-1 subtype B-infected French patients were studied using pools of HIV-1 clade B peptides (110 well-defined HIV CD8+ T cell epitopes) in an ELISPOT IFN-gamma assay. There was no difference in the number of recognized peptide pools between Ivorian and French cohorts (mean of four pools in both cases). Ivorian individuals had generated CD8+ T cell responses cross-reactive against HIV-1 subtype B and some individual peptides had been identified. Furthermore, sequence analysis of nef HIV genes of the Ivorian patients and nef cloning in two patients revealed very few variations between HIV- 1 intersubtype CRF02_AG and subtype B in nef immunodominant regions included in HIV clade B lipopeptide vaccines, currently tested in France.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Gene Products, nef/chemistry , HIV Infections/immunology , HIV-1/chemistry , Immunodominant Epitopes/chemistry , Amino Acid Sequence , Cohort Studies , Cote d'Ivoire , Gene Products, nef/immunology , HIV-1/immunology , Humans , Immunodominant Epitopes/immunology , Molecular Sequence Data , Sequence Homology, Amino Acid , nef Gene Products, Human Immunodeficiency Virus
SELECTION OF CITATIONS
SEARCH DETAIL