Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 42(5): 850-868.e9, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38670091

ABSTRACT

TP53-mutant blood cancers remain a clinical challenge. BH3-mimetic drugs inhibit BCL-2 pro-survival proteins, inducing cancer cell apoptosis. Despite acting downstream of p53, functional p53 is required for maximal cancer cell killing by BH3-mimetics through an unknown mechanism. Here, we report p53 is activated following BH3-mimetic induced mitochondrial outer membrane permeabilization, leading to BH3-only protein induction and thereby potentiating the pro-apoptotic signal. TP53-deficient lymphomas lack this feedforward loop, providing opportunities for survival and disease relapse after BH3-mimetic treatment. The therapeutic barrier imposed by defects in TP53 can be overcome by direct activation of the cGAS/STING pathway, which promotes apoptosis of blood cancer cells through p53-independent BH3-only protein upregulation. Combining clinically relevant STING agonists with BH3-mimetic drugs efficiently kills TRP53/TP53-mutant mouse B lymphoma, human NK/T lymphoma, and acute myeloid leukemia cells. This represents a promising therapy regime that can be fast-tracked to tackle TP53-mutant blood cancers in the clinic.


Subject(s)
Apoptosis , Membrane Proteins , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/genetics , Humans , Animals , Mice , Membrane Proteins/genetics , Apoptosis/drug effects , Cell Line, Tumor , Mutation , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Peptide Fragments/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction/drug effects , Proto-Oncogene Proteins/genetics
2.
Blood ; 140(20): 2127-2141, 2022 11 17.
Article in English | MEDLINE | ID: mdl-35709339

ABSTRACT

Venetoclax (VEN) inhibits the prosurvival protein BCL2 to induce apoptosis and is a standard therapy for chronic lymphocytic leukemia (CLL), delivering high complete remission rates and prolonged progression-free survival in relapsed CLL but with eventual loss of efficacy. A spectrum of subclonal genetic changes associated with VEN resistance has now been described. To fully understand clinical resistance to VEN, we combined single-cell short- and long-read RNA-sequencing to reveal the previously unappreciated scale of genetic and epigenetic changes underpinning acquired VEN resistance. These appear to be multilayered. One layer comprises changes in the BCL2 family of apoptosis regulators, especially the prosurvival family members. This includes previously described mutations in BCL2 and amplification of the MCL1 gene but is heterogeneous across and within individual patient leukemias. Changes in the proapoptotic genes are notably uncommon, except for single cases with subclonal losses of BAX or NOXA. Much more prominent was universal MCL1 gene upregulation. This was driven by an overlying layer of emergent NF-κB (nuclear factor kappa B) activation, which persisted in circulating cells during VEN therapy. We discovered that MCL1 could be a direct transcriptional target of NF-κB. Both the switch to alternative prosurvival factors and NF-κB activation largely dissipate following VEN discontinuation. Our studies reveal the extent of plasticity of CLL cells in their ability to evade VEN-induced apoptosis. Importantly, these findings pinpoint new approaches to circumvent VEN resistance and provide a specific biological justification for the strategy of VEN discontinuation once a maximal response is achieved rather than maintaining long-term selective pressure with the drug.


Subject(s)
Antineoplastic Agents , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , NF-kappa B , Drug Resistance, Neoplasm/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Recurrence , Antineoplastic Agents/therapeutic use
3.
Blood Adv ; 4(12): 2762-2767, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32569380

ABSTRACT

Improving survival outcomes in adult B-cell acute lymphoblastic leukemia (B-ALL) remains a clinical challenge. Relapsed disease has a poor prognosis despite the use of tyrosine kinase inhibitors (TKIs) for Philadelphia chromosome positive (Ph+ ALL) cases and immunotherapeutic approaches, including blinatumomab and chimeric antigen receptor T cells. Targeting aberrant cell survival pathways with selective small molecule BH3-mimetic inhibitors of BCL-2 (venetoclax, S55746), BCL-XL (A1331852), or MCL1 (S63845) is an emerging therapeutic option. We report that combined targeting of BCL-2 and MCL1 is synergistic in B-ALL in vitro. The combination demonstrated greater efficacy than standard chemotherapeutics and TKIs in primary samples from adult B-ALL with Ph+ ALL, Ph-like ALL, and other B-ALL. Moreover, combined BCL-2 or MCL1 inhibition with dasatinib showed potent killing in primary Ph+ B-ALL cases, but the BH3-mimetic combination appeared superior in vitro in a variety of Ph-like ALL samples. In PDX models, combined BCL-2 and MCL1 targeting eradicated ALL from Ph- and Ph+ B-ALL cases, although fatal tumor lysis was observed in some instances of high tumor burden. We conclude that a dual BH3-mimetic approach is highly effective in diverse models of high-risk human B-ALL and warrants assessment in clinical trials that incorporate tumor lysis precautions.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins c-bcl-2 , Adult , B-Lymphocytes , Cell Line, Tumor , Humans , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Proto-Oncogene Proteins c-bcl-2/genetics
4.
PLoS One ; 11(9): e0162111, 2016.
Article in English | MEDLINE | ID: mdl-27583437

ABSTRACT

The Suppressors of Cytokine Signalling (SOCS) proteins are negative regulators of cytokine signalling required to prevent excess cellular responses. SOCS1 and SOCS3 are essential to prevent inflammatory disease, SOCS1 by attenuating responses to IFNγ and gamma-common (γc) cytokines, and SOCS3 via regulation of G-CSF and IL-6 signalling. SOCS1 and SOCS3 show significant sequence homology and are the only SOCS proteins to possess a KIR domain. The possibility of overlapping or redundant functions was investigated in inflammatory disease via generation of mice lacking both SOCS1 and SOCS3 in hematopoietic cells. Loss of SOCS3 significantly accelerated the pathology and inflammatory disease characteristic of SOCS1 deficiency. We propose a model in which SOCS1 and SOCS3 operate independently to control specific cytokine responses and together modulate the proliferation and activation of lymphoid and myeloid cells to prevent rapid inflammatory disease.


Subject(s)
Bone Marrow Cells/metabolism , Inflammation/metabolism , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Animals , CD8-Positive T-Lymphocytes/cytology , Granulocyte Colony-Stimulating Factor/biosynthesis , Inflammation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/genetics
5.
Biogerontology ; 5(3): 185-92, 2004.
Article in English | MEDLINE | ID: mdl-15190188

ABSTRACT

Strains of Drosophila melanogaster have been generated that vary in the mitochondrial genome and have a common nuclear genome. Tetracycline was used to cure the strains of the endocommensal bacteria, Wolbachia, which is transmitted maternally. Variation in the tetracycline responsive agent contributed substantially to variation in longevity and production of metabolic oxidants. Changes in diurnal cycle of activity have been investigated: such changes should be responsive to metabolism-related damage because of the role of the very active neurons, retinal cells and muscle. The metabolic oxidant model predicts that longevity and production of metabolic oxidants should be negatively correlated, and that deterioration of behavior with age and metabolic oxidant production should be positively correlated. Only the first prediction was verified: rate of change in behavior correlated with metabolic oxidants, consistent with a role of metabolic oxidants in this age-related change. However, the data indicates a role for mitochondria in determination longevity, other than by production of metabolic oxidants.


Subject(s)
Drosophila melanogaster/physiology , Mitochondria/physiology , Oxidative Stress , Animals , Circadian Rhythm , Lipid Peroxides/metabolism
6.
Biogerontology ; 3(1-2): 103-6, 2002.
Article in English | MEDLINE | ID: mdl-12014827

ABSTRACT

In old humans and pathologies associated with mitochondrial mutations, deletions in mitochondrial DNA have been associated with failing function. Investigations have been reported where treatment with a number of micronutrients, such as coenzyme Q10, have been used to re-energise failing tissues. Bioenergy changes in ageing Drosophila have been observed which indicate similar changes in mitochondrial function in old age. Reserves of carbohydrate and fat fall and food intake rises. Biochemical changes include falling mitochondrial enzymes. Mitochondrial DNA contains increased amounts of sequences corresponding to deletions. Both coenzyme Q10 and nicotinamide in large doses successfully reversed bioenergy changes in aged Drosophila. However, only nicotinamide was able to reduce short term mortality and increase life span, whereas coenzyme Q10 increased mortality and reduced life span. Production of reactive oxygen species (ROS) was increased in coenzyme Q10 treated flies, whereas nicotinamide reduced ROS production. It is suggested that ROS production may account for these longevity differences. Large doses of two micronutrients have been successful in reversing the age-associated bioenergy deficit in Drosophila. This response is similar to clinical reports of re-energising tissues where mitochondrial damage has been observed. However, this work highlights a danger for some micronutrients, such as coenzyme Q10, that clinical efficacy may be limited by increased ROS production.


Subject(s)
Drosophila/physiology , Mitochondria/physiology , Ubiquinone/analogs & derivatives , Animals , Coenzymes , DNA, Mitochondrial/genetics , Energy Metabolism , Longevity , Niacinamide/pharmacology , Reactive Oxygen Species , Ubiquinone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...