Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 317
Filter
1.
Hum Reprod ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783613

ABSTRACT

STUDY QUESTION: After an IVF cycle cancellation, does changing the stimulation protocol affect the odds of live birth and recurrent cancellation in the subsequent cycle? SUMMARY ANSWER: After IVF cycle cancellation, compared to those who repeated the same stimulation protocol, those who changed their protocol had higher odds of live birth and lower odds of recurrent cycle cancellation. WHAT IS KNOWN ALREADY: There is limited data addressing the effect of changing the stimulation protocol after an IVF cycle is cancelled during initial stimulation. The odds of live birth outcomes are not known so far in studies addressing the effect of changing the protocol. STUDY DESIGN, SIZE, DURATION: Retrospective Cohort Study using the 2014-2017 Society for Assisted Reproductive Technology Clinic Outcome Reporting System (SART CORS) database. PARTICIPANTS/MATERIALS, SETTING, METHODS: The data included 13 135 patients with a first autologous IVF cycle that resulted in a cycle cancellation and was followed by a second autologous cycle within the study period. We excluded fertility preservation cycles, supernumerary cycle attempts after the second IVF cycle attempt, and cycles with more than one stimulation protocol documented per cycle start. Patients who received the same protocol for both cycles (n = 6434) were compared to those who changed their protocol in the second cycle (n = 6701). Multivariable logistic regression analyses were performed to estimate the adjusted odds of live birth and recurrent cancellation. MAIN RESULTS AND THE ROLE OF CHANCE: Changing the protocol in the second cycle resulted 14% lower odds of recurrent cycle cancellation (P = 0.01) and 17% higher odds of live birth after fresh transfers (P = 0.04). When stratifying the data by specific combinations of protocol change (agonist flare, agonist suppression, antagonist), there was an increase in live birth when switching from antagonist to agonist suppression (odds ratio (OR) = 1.36, P = 0.03) and from agonist suppression to antagonist (OR = 1.73, P = 0.01) compared to those who repeated their same stimulation protocol. Specifically in poor responders, outcomes were worse when using the agonist flare protocol and significantly improved with the agonist suppression protocol. LIMITATIONS, REASONS FOR CAUTION: Comparison of response to stimulation between first and second cycles cannot be made in this study because the index IVF cycle was cancelled during ovarian stimulation, and thus there is no reportable outcome data for that cycle. Additionally, SART only tracks the three stimulation protocols addressed in this study and does not have data on more contemporary protocols that are used in poor responders thus limiting the generalizability of our findings. WIDER IMPLICATIONS OF THE FINDINGS: Using the SART CORS database, which includes >90% of all reported IVF cycles in the USA, provides generalizability to the demographically diverse IVF populations found here. In agreement with prior studies assessing change in IVF protocols, the agonist flare protocol seems to result in worse IVF outcomes, and based on our results, we believe that there is no role for the agonist flare protocol in patients with a prior poor response to stimulation. STUDY FUNDING/COMPETING INTEREST(S): None declared. TRIAL REGISTRATION NUMBER: N/A.

2.
J Phys Chem Lett ; 15(2): 432-438, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38189241

ABSTRACT

The highly reactive dihalogens play a significant role in the oxidative chemistry of the troposphere. One of the main reservoirs of these halogens is hypohalous acids, HOX, which produce dihalogens in the presence of halides (Y-), where X, Y = Cl, Br, I. These reactions occur in and on aerosol particles and seawater surfaces and have been studied experimentally and by field observations. However, the mechanisms of these atmospheric reactions are still unknown. Here, we establish the atomistic mechanism of HOCl + Cl- → Cl2 + OH- at the surface of the water slab by performing ab initio molecular dynamics (AIMD) simulations. Main findings are (1) This reaction proceeds by halogen-bonded complexes of (HOCl)···(Cl-)aq surrounded with the neighboring water molecules. (2) The halogen bonded (HOCl)···(Cl-)aq complexes undergo charge transfer from Cl- to OH- to form transient Cl2 at neutral pH. (3) The addition of a proton to one proximal water greatly facilitates the Cl2 formation, which explains the enhanced rate at low pH.

3.
Phys Chem Chem Phys ; 25(39): 26737-26747, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37779496

ABSTRACT

The impact of the stereochemistry of the glycosyl cation species upon its dynamic properties is examined together with their vibrational spectra in order to gain insight into the effects of configurational isomerism on conformer dynamics and proton mobility. Ab initio molecular dynamics (AIMD) simulations and infrared multiple photon dissociation (IRMPD) spectroscopy explore the conformational and reactive dynamics of two pairs of glycosyl cation isomers: (1) protonated α- and ß- anomers of methyl-D-galactopyranoside and (2) the oxocarbenium ions of the D-aldohexose C2 epimers galactose and talose. Analysis of these simulations together with experimental spectroscopy, interpreted by anharmonic calculations, points to the key role played by the intramolecular hydrogen bonds which are present in a unique pattern and extent in each isomer. We find that the reactivity of galactoside stereoisomers toward acid-catalyzed nucleophilic substitution, as gauged by the ability to form free oxocarbenium ions, differs markedly in a way that agrees with experimental measurements in the condensed phase. Other properties such as conformer stability and vibrational transitions were also found to reflect the characteristic hydrogen bonding interactions present in each isomer. In both systems, the stereochemistry is shown to determine the strength of intramolecular hydrogen bonding as well as between which substituents proton transfer is possible. We expect that the critical impact of non-covalent interactions on stereoisomer selectivity may be a widely found phenomenon whose effects should be further investigated.

4.
Phys Chem Chem Phys ; 25(26): 17306-17319, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37345428

ABSTRACT

Organic chromophores initiate much of daytime aqueous phase chemistry in the environment. Thus, studying the absorption spectra of commonly used organic photosensitizers is paramount to fully understand their relevance in environmental processes. In this work, we combined UV-Vis spectroscopy, 1H-NMR spectroscopy, quantum chemical calculations, and molecular dynamics simulations to investigate the absorption spectra of 4-benzoyl benzoic acid (4BBA), a widely used photosensitizer and a common proxy of environmentally relevant chromophores. Solutions of 4BBA at different pH values show that protonated and deprotonated species have an effect on its absorbance spectra. Theoretical calculations of these species in water clusters provide physical and chemical insights into the spectra. Quantum chemical calculations were conducted to analyze the UV-Vis absorbance spectra of 4BBA species using various cluster sizes, such as C6H5COC6H4COOH·(H2O)n, where n = 8 for relatively small clusters and n = 30 for larger clusters. While relatively small clusters have been successfully used for smaller chromophores, our results indicate that simulations of protonated species of 4BBA require relatively larger clusters of n = 30. A comparison between the experimental and theoretical results shows good agreement in the pH-dependent spectral shift between the hydrated cluster model and the experimental data. Overall, the theoretical and empirical results indicate that the experimental optical spectra of aqueous phase 4BBA can be represented by the acid-base equilibrium of the keto-forms, with a spectroscopically measured pKa of 3.41 ± 0.04. The results summarized here contribute to a molecular-level understanding of solvated organic molecules through calculations restricted to cluster models, and thereby, broader insight into environmentally relevant chromophores.

5.
Sci Total Environ ; 889: 164210, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37196965

ABSTRACT

Anthropogenic activities, including combustion of fossil fuels, coal, and gold mining, are significant sources of mercury (Hg) emissions into aquatic ecosystems. South Africa is a major contributor to global Hg emissions (46.4 tons Hg in 2018), with coal-fired power stations as the main source. Atmospheric transport of Hg emissions is the dominant cause of contamination, especially on the east coast of southern Africa where the Phongolo River Floodplain (PRF) is located. The PRF is the largest floodplain system in South Africa, with unique wetlands and high biodiversity, and provides essential ecosystem services to local communities who rely on fish as a protein source. We assessed the bioaccumulation of Hg in various biota, the trophic positions and food webs, as well as the biomagnification of Hg through the food webs in the PRF. Elevated Hg concentrations were found in sediments, macroinvertebrates and fish from the main rivers and associated floodplains in the PRF. Mercury biomagnification was observed through the food webs, with the apex predator tigerfish, Hydrocynus vittatus, having the highest Hg concentration. Our study shows that Hg in the PRF is bioavailable, accumulates in biota and biomagnifies in food webs.


Subject(s)
Characiformes , Mercury , Water Pollutants, Chemical , Animals , Mercury/analysis , Food Chain , Ecosystem , Bioaccumulation , Wetlands , Environmental Monitoring , Water Pollutants, Chemical/analysis , Fishes/metabolism , Characiformes/metabolism , Coal
6.
Chemphyschem ; 24(5): e202200819, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36385485

ABSTRACT

The reaction of N2 O5 at atmospheric interfaces has recently received considerable attention due to its importance in atmospheric chemistry. N2 O5 reacts preferentially with Cl- to form ClNO2 /NO3 - (Cl- substitution), but can also react with H2 O to form 2HNO3 (hydrolysis). In this paper, we explore these competing reactions in a theoretical study of the clusters N2 O5 /Cl- /nH2 O (n=2-5), resulting in the identification of three reaction motifs. First, we uncovered an SN 2-type Cl- substitution reaction of N2 O5 that occurs very quickly due to low barriers to reaction. Second, we found a low-lying pathway to hydrolysis via a ClNO2 intermediate (two-step hydrolysis). Finally, we found a direct hydrolysis pathway where H2 O attacks N2 O5 (one-step hydrolysis). We find that Cl- substitution is the fastest reaction in every cluster. Between one-step and two-step hydrolysis, we find that one-step hydrolysis barriers are lower, making two-step hydrolysis (via ClNO2 intermediate) likely only when concentrations of Cl- are high.

7.
Mar Pollut Bull ; 184: 114142, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36182787

ABSTRACT

Global declines in elasmobranch populations resulting from several stressors raises conservation concern. Additionally, apex predators bioaccumulate high concentrations of total mercury (THg), due to biomagnification. Although South Africa is considered one of the top ten contributors of Hg emissions globally, information on Hg concentrations in elasmobranchs is limited. The aim of this study was to evaluate the THg concentrations in 22 species of elasmobranchs along the South African coastline. Concentrations ranged between 0.22 and 5.8 mg/kg in Haploblepharus pictus (dark shysharks) and Rostroraja alba (white skates) on the south coast, respectively. Along the east coast it ranged between 0.21 and 17.8 mg/kg in Mobula kuhlii (shortfin devil rays) and Sphyrna lewini (scalloped hammerheads), respectively. Mercury concentrations on the east coast were in the same range or higher compared to the same species sampled between 2005-10 from the same region, with generally higher concentrations compared to the same species sampled globally.


Subject(s)
Mercury , Sharks , Skates, Fish , Water Pollutants, Chemical , Animals , Mercury/analysis , South Africa , Water Pollutants, Chemical/analysis , Seafood
8.
J Chem Phys ; 156(17): 174303, 2022 May 07.
Article in English | MEDLINE | ID: mdl-35525657

ABSTRACT

We report vibrational spectra of the H2-tagged, cryogenically cooled X- · HOCl (X = Cl, Br, and I) ion-molecule complexes and analyze the resulting band patterns with electronic structure calculations and an anharmonic theoretical treatment of nuclear motions on extended potential energy surfaces. The complexes are formed by "ligand exchange" reactions of X- · (H2O)n clusters with HOCl molecules at low pressure (∼10-2 mbar) in a radio frequency ion guide. The spectra generally feature many bands in addition to the fundamentals expected at the double harmonic level. These "extra bands" appear in patterns that are similar to those displayed by the X- · HOD analogs, where they are assigned to excitations of nominally IR forbidden overtones and combination bands. The interactions driving these features include mechanical and electronic anharmonicities. Particularly intense bands are observed for the v = 0 → 2 transitions of the out-of-plane bending soft modes of the HOCl molecule relative to the ions. These involve displacements that act to break the strong H-bond to the ion, which give rise to large quadratic dependences of the electric dipoles (electronic anharmonicities) that drive the transition moments for the overtone bands. On the other hand, overtone bands arising from the intramolecular OH bending modes of HOCl are traced to mechanical anharmonic coupling with the v = 1 level of the OH stretch (Fermi resonances). These interactions are similar in strength to those reported earlier for the X- · HOD complexes.

9.
Phys Chem Chem Phys ; 24(17): 10033-10043, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35415732

ABSTRACT

In this paper we study collisions between polyatomic radicals - an important process in fields ranging from biology to combustion. Energy transfer, formation of intermediate complexes and recombination reactions are treated, with applications to peroxy radicals in atmospheric chemistry. Multi-reference perturbation theory, supplemented by coupled-cluster calculations, describes the potential energy surfaces with high accuracy, including the interaction of singlet and triplet spin states during radical recombination. Our multi-reference molecular dynamics (MD) trajectories on methyl peroxy radicals confirm the reaction mechanism postulated in earlier studies. Specifically, they show that if suitable pre-reactive complexes are formed, they will rapidly lead to the formation and subsequent decomposition of tetroxide intermediates. However, generating multi-reference MD trajectories is exceedingly computationally demanding, and we cannot adequately sample the whole conformational space. To answer this challenge, we promote the use of a novel simplified semi-empirical MD methodology. It assumes the collision is governed by two states, a singlet (S0) and a triplet (T1) state. The method predicts differences between collisions on S0 and T1 surfaces, and qualitatively includes not only pre-reactive complex formation, but also recombination processes such as tetroxide formation. Finally, classical MD simulations using force-fields for non-reactive collisions are employed to generate thousands of collision trajectories, to verify that the semi-empirical method is sampling collisions adequately, and to carry out preliminary investigations of larger systems. For systems with low activation energies, the experimental rate coefficient is surprisingly well reproduced by simply multiplying the gas-kinetic collision rate by the simulated probability for long-lived complex formation.


Subject(s)
Recombination, Genetic , Energy Transfer , Kinetics , Molecular Conformation
10.
J Phys Chem Lett ; 13(12): 2750-2756, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35315676

ABSTRACT

In the presence of a halide ion, hypohalous acids can adopt two binding motifs upon formation of the ion-molecule complexes [XHOY]- (X, Y = Cl, Br, I): a hydrogen (HB) bond to the acid OH group and a halogen (XB) bond between the anion and the acid halogen. Here we isolate the X-bonded Cl-·IOH ion-molecule complex by collisions of I-·(H2O)n clusters with HOCl vapor and measure its vibrational spectrum by IR photodissociation of the H2-tagged complex. Anharmonic analysis of its vibrational band pattern reveals that formation of the XB complex results in dramatic lowering of the HOI bending fundamental frequency and elongation of the O-I bond (by 168 cm-1 and 0.13 Å, respectively, relative to isolated HOI). The frequency of the O-I stretch (estimated 436 cm-1) is also encoded in the spectrum by the weak v = 0 → 2 overtone transition at 872 cm-1.


Subject(s)
Halogens , Vibration , Halogens/chemistry , Hydrogen/chemistry , Hydrogen Bonding , Spectrum Analysis
11.
J Phys Chem A ; 126(2): 190-197, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34990547

ABSTRACT

Gallic acid (GA) has been characterized in terms of its optical properties in aqueous solutions at varying pH in experiments and in theoretical calculations by analyzing the protonated and deprotonated forms of GA. This work is part of a series of studies of the optical properties of different carboxylic acids in aqueous media. The experimental electronic spectra of GA exhibit two strong well-separated absorption peaks (B- and C-bands), which agree with previous studies. However, in the current study, an additional well-defined low-energy shoulder band (A-band) in the optical spectra of GA was identified. It is likely that the A-band occurs for other carboxylic acids in solution, but because it can overlap with the B-band, it is difficult to discern. The theoretical calculations based on density functional theory were used to simulate the optical absorption spectra of GA in water at different pH to prove the existence of this newly found shoulder band and to describe and characterize the full experimental optical spectra of GA. Different cluster models were tested: (i) all water molecules are coordinated near the carboxy-group and (ii) additional water molecules near the hydroxy-groups of the phenyl ring were included. In this study, we found that both the polarizable continuum model (dielectric property of a medium) and neighboring water molecules (hydrogen-bonding) play significant roles in the optical spectrum. The results showed that only an extended cluster model with water molecules near carboxy- and hydroxy-groups together with the polarizable continuum model allowed us to fully reproduce the experimental data and capture all three absorption bands (A, B, and C). The oscillator strengths of the absorption bands were obtained from the experimental data and compared with theoretical results. Additionally, our work provides a detailed interpretation of the pH effects observed in the experimental absorption spectra.

12.
Phys Chem Chem Phys ; 23(17): 10487-10497, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33899856

ABSTRACT

Water systems often contain complex macromolecular systems that absorb light. In marine environments, these light absorbing components are often at the air-water interface and can participate in the chemistry of the atmosphere in ways that are poorly understood. Understanding the photochemistry and photophysics of these systems represents a major challenge since their composition and structures are not unique. In this study, we present a successful microscopic model of this light absorbing macromolecular species termed "marine derived chromophoric dissolved organic matter" or "m-CDOM" in water. The approach taken involves molecular dynamics simulations in the ground state using on the fly Density Functional Tight-Binding (DFTB) electronic structure theory; Time Dependent DFTB (TD-DFTB) calculations of excited states, and experimental measurements of the optical absorption spectra in aqueous solution. The theoretical hydrated model shows key features seen in the experimental data for a collected m-CDOM sample. As will be discussed, insights from the model are: (i) the low-energy A-band (at 410 nm) is due to the carbon chains combined with the diol- and the oxy-groups present in the structure; (ii) the weak B-band (at 320-360 nm) appears due to the contribution of the ionized speciated form of m-CDOM; and (iii) the higher-energy C-band (at 280 nm) is due to the two fused ring system. Thus, this is a two-speciated formed model. Although a relatively simple system, these calculations represent an important step in understanding light absorbing compounds found in nature and the search for other microscopic models of related materials remains of major interest.

13.
J Phys Chem Lett ; 12(13): 3335-3342, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33779169

ABSTRACT

We report the water-mediated charge separation of nitric acid upon incorporation into size-selected Cs+·(HNO3)(H2O)n=0-11 clusters at 20 K. Dramatic spectral changes are observed in the n = 7-9 range that are traced to the formation of many isomeric structures associated with intermediate transfer of the acidic proton to the water network. This transfer is complete by n = 10, which exhibits much simpler vibrational band patterns consistent with those expected for a tricoordinated hydronium ion (the Eigen motif) along with the NO stretching bands predicted for a hydrated NO3- anion that is directly complexed to the Cs+ cation. Theoretical analysis of the n = 10 spectrum indicates that the dissociated ions adopt a solvent-separated ion-pair configuration such that the Cs+ and H3O+ cations flank the NO3- anion in a microhydrated salt bridge. This charge separation motif is evidently assisted by the electrostatic stabilization of the product NO3-/H3O+ ion pair by the proximal metal ion.

14.
J Chem Theory Comput ; 16(11): 7005-7016, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32991804

ABSTRACT

A dual electronic basis set approach is introduced for more efficient but accurate calculations of the anharmonic vibrational spectra in the framework of the vibrational self-consistent field (VSCF) theory. In this approach, an accurate basis set is used to compute the vibrational spectra at the harmonic level. The results are used to scale the potential surface from a more modest but much more efficient basis set. The scaling is such that at the harmonic level the new, scaled potential agrees with one of the accurate basis sets. The approach is tested in the application of the microsolvated, protected amino acid Ac-Phe-OMe, using the scaled anharmonic hybrid potential in the VSCF and VSCF-PT2 algorithms. The hybrid potential method yields results that are in good accord with the experiment and very close to those obtained in calculations with the high-level, very costly potential from the large basis set. At the same time, the hybrid potential calculations are considerably less expensive. The results of the hybrid calculations are much more accurate than those computed from the potential surface corresponding to the modest basis set. The results are very encouraging for using the hybrid potential method for inexpensive yet sufficiently accurate anharmonic calculations for the spectra of large biomolecules.


Subject(s)
Macromolecular Substances/chemistry , Quantum Theory , Solvents/chemistry , Spectrum Analysis , Vibration , Molecular Conformation
15.
Phys Chem Chem Phys ; 22(22): 12658-12670, 2020 Jun 14.
Article in English | MEDLINE | ID: mdl-32458893

ABSTRACT

Pyruvic acid is abundant in the atmosphere and in seawater, being a decay product of living organisms. Although very small in size (10 atoms), pyruvic acid exhibits conformational complexity in the gas phase and in solution, which is reflected in the UV spectrum. The gas phase UV spectrum of pyruvic acid differs from the spectrum of pyruvic acid in water. The main atmospherically relevant absorption peak in the gas phase is blue shifted by about 0.43 eV (40 nm difference in the peak location) in water. The origin of the blue shift has not been established thus far. This paper aims at a microscopic understanding of the absorption spectrum of pyruvic acid in aqueous media by a combined experimental and theoretical approach. 1H NMR experiments were performed to reveal the contribution of the different conformers in solution as a function of pH. Computationally, hydrates of sizes up to 5 water molecules using two different species of pyruvic acid, the neutral acid and the anionic form were considered. Vertical excitation energies using the ADC(2) method (algebraic-diagrammatic construction through second order) of these structures provide insights into the blue shift of the atmospherically relevant absorption peak. Additionally, molecular dynamics simulation on MP2 (Møller-Plesset perturbation theory) ground state of small clusters of pyruvic acid with four water molecules were calculated and used in computing the vertical excitation spectrum along the dynamics. This is found to describe very accurately the experimental spectrum. Overall, the results show that small hydrate models including the roles of both neutral and deprotonated speciated forms provide a good quantitative description and a microscopic interpretation of the experimental spectrum of pyruvic acid in aqueous solution.

16.
J Phys Chem A ; 124(25): 5071-5080, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32441097

ABSTRACT

Recent studies have shown that pyruvic acid can produce higher-molecular-weight compounds upon irradiation in the aqueous phase. These compounds can contribute to the formation of secondary organic aerosols. There have been several previous studies on the effect of ionic strength on the photochemistry of pyruvic acid; however, few of them investigated the effects of marine relevant salts such as NaCl and CaCl2. In this study, we examine the effect of NaCl and CaCl2, namely, containing the coordinating cations Na+ and Ca2+, on the speciation, absorption properties, and photoreactivity of pyruvic acid in aqueous solutions of varying pH. NMR shows that both Ca2+ and Na+ further deprotonate pyruvic acid and decrease the diol to ketone ratio of pyruvic acid than in pure water at the same pH, especially at more acidic pH (pH less than 4). The absorption spectrum shows a strong red shift in the peak maxima for the n → π* transition of pyruvic acid in NaCl/CaCl2 solutions. This dependence is much more pronounced for divalent cations (Ca2+) compared to monovalent cations (Na+). Vertical excitation energy calculations of the anionic ketone form of pyruvic acid confirm the same red shift on the n → π* transition peak in the presence of Ca2+. In addition, the presence of NaCl/CaCl2 suppresses the photolysis rate of pyruvic acid, which could be due to the deprotonation of pyruvic acid by the cations and the lower photochemical reactivity for pyruvate, the deprotonated form.

17.
Phys Chem Chem Phys ; 22(11): 6478, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32129432

ABSTRACT

Correction for 'Isomer-specific cryogenic ion vibrational spectroscopy of the D2 tagged Cs+(HNO3)(H2O)n=0-2 complexes: ion-driven enhancement of the acidic H-bond to water' by Sayoni Mitra et al., Phys. Chem. Chem. Phys., 2020, DOI: 10.1039/c9cp06689f.

18.
Phys Chem Chem Phys ; 22(8): 4501-4507, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32068217

ABSTRACT

We report how the binary HNO3(H2O) interaction is modified upon complexation with a nearby Cs+ ion. Isomer-selective IR photodissociation spectra of the D2-tagged, ternary Cs+(HNO3)H2O cation confirms that two structural isomers are generated in the cryogenic ion source. In one of these, both HNO3 and H2O are directly coordinated to the ion, while in the other, the water molecule is attached to the OH group of the acid, which in turn binds to Cs+ with its -NO2 group. The acidic OH stretching fundamental in the latter isomer displays a ∼300 cm-1 red-shift relative to that in the neutral H-bonded van der Waals complex, HNO3(H2O). This behavior is analyzed with the aid of electronic structure calculations and discussed in the context of the increased effective acidity of HNO3 in the presence of the cation.

19.
Phys Chem Chem Phys ; 22(9): 5046-5056, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32077456

ABSTRACT

The absorption spectra of molecular organic chromophores in aqueous media are of considerable importance in environmental chemistry. In this work, the UV-vis spectra of benzoic acid (BA), the simplest aromatic carboxylic acid, in aqueous solutions at varying pH and in the presence of salts are measured experimentally. The solutions of different pH provide insights into the contributions from both the non-dissociated acid molecule and the deprotonated anionic species. The microscopic interpretation of these spectra is then provided by quantum chemical calculations for small cluster models of benzoic species (benzoic acid and benzoate anion) with water molecules. Calculations of the UV-vis absorbance spectra are then carried out for different clusters such as C6H5COOH·(H2O)n and C6H5COO-·(H2O)n, where n = 0-8. The following main conclusions from these calculations and the comparison to experimental results can be made: (i) the small water cluster yields good quantitative agreement with observed solution experiments; (ii) the main peak position is found to be very similar at different levels of theory and is in excellent agreement with the experimental value, however, a weaker feature about 1 eV to lower energy (red shift) of the main peak is correctly reproduced only by using high level of theory, such as Algebraic Diagrammatic Construction (ADC); (iii) dissociation of the BA into ions is found to occur with a minimum of water molecules of n = 8; (iv) the deprotonation of BA has an influence on the computed spectrum and the energetics of the lowest energy electronic transitions; (v) the effect of the water on the spectra is much larger for the deprotonated species than for the non-dissociated acid. It was found that to reproduce experimental spectrum at pH 8.0, additional continuum representation for the extended solvent environment must be included in combination with explicit solvent molecules (n ≥ 3); (vi) salts (NaCl and CaCl2) have minimal effect on the absorption spectrum and; (vii) experimental results showed that B-band of neutral BA is not sensitive to the solvent effects whereas the effect of the water on the C-band is significant. The water effects blue-shift this band up to ∼0.2 eV. Overall, the results demonstrate the ability to further our understanding of the microscopic interpretation of the electronic structure and absorption spectra of BA in aqueous media through calculations restricted to small cluster models.

20.
Phys Chem Chem Phys ; 22(7): 4144-4157, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32039431

ABSTRACT

Protonated intermediates are postulated to be involved in the rate determining step of many sugar reactions. This paper presents a study of protonated sugar species, isolated in the gas phase, using a combination of infrared multiple photon dissociation (IRMPD) spectroscopy, classical ab initio molecular dynamics (AIMD) and quantum mechanical vibrational self-consistent field (VSCF) calculations. It provides a likely identification of the reactive intermediate oxocarbenium ion structure in a d-galactosyl system as well as the saccharide pyrolysis product anhydrogalactose (that suggests oxocarbenium ion stabilization), along with the spectrum of the protonated parent species: methyl d-galactopyranoside-H+. Its vibrational fingerprint indicates intramolecular proton sharing. Classical AIMD simulations for galactosyl oxocarbenium ions, conducted in the temperature range ∼300-350 K (using B3LYP potentials on-the-fly) reveal efficient transitions on the picosecond timescale. Multiple conformers are likely to exist under the experimental conditions and along with static VSCF calculations, they have facilitated the identification of the individual structural motifs of the galactosyl oxocarbenium ion and protonated anhydrogalactose ion conformers that contribute to the observed experimental spectra. These results demonstrate the power of experimental IRMPD spectroscopy combined with dynamics simulations and with computational spectroscopy at the anharmonic level to unravel conformer structures of protonated saccharides, and to provide information on their lifetimes.

SELECTION OF CITATIONS
SEARCH DETAIL
...