Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
BMJ Open Sport Exerc Med ; 10(1): e001787, 2024.
Article in English | MEDLINE | ID: mdl-38196940

ABSTRACT

Objective: To investigate asymmetry in spatiotemporal and kinetic variables in 800+ recreational runners, identify determinants of asymmetry, investigate if asymmetry is related to greater running injury risk and compare spatiotemporal and kinetic variables between the involved and uninvolved limb at baseline in runners having sustained an injury during follow-up. Methods: 836 healthy recreational runners (38.6% women) were tested on an instrumented treadmill at their preferred running speed at baseline and followed up for 6 months. From ground reaction force recordings, spatiotemporal and kinetic variables were derived for each lower limb. The Symmetry Index was computed for each variable. Correlations and multiple regression analyses were performed to identify potential determinants of asymmetry. Cox regression analyses investigated the association between asymmetry and injury risk. Analysis of variance for repeated measures was used to compare the involved and uninvolved limbs in runners who had sustained injuries during follow-up. Results: 107 participants reported at least one running-related injury. Leg length discrepancy and fat mass were the most common determinants of asymmetry, but all correlation coefficients were negligible (0.01-0.13) and explained variance was very low (multivariable-adjusted R2<0.01-0.03). Greater asymmetry for flight time and peak breaking force was associated with lower injury risk (HR (95% CI): 0.80 (0.64 to 0.99) and 0.96 (0.93 to 0.98), respectively). No between-limb differences were observed in runners having sustained an injury. Conclusion: Gait asymmetry was not associated with higher injury risk for investigated spatiotemporal and kinetic variables. Trial registration number: NCT03115437.

2.
Orthop J Sports Med ; 11(10): 23259671231204629, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37868213

ABSTRACT

Background: Identifying atypical lower limb biomechanics may help prevent the occurrence or recurrence of running-related injuries. No reference values for spatiotemporal or kinetic variables in healthy recreational runners are available in the scientific literature to support clinical management. Purpose: To (1) present speed- and sex-stratified reference values for spatiotemporal and kinetic variables in healthy adult recreational runners; (2) identify the determinants of these biomechanical variables; and (3) develop reference regression equations that can be used as a guide in a clinical context. Study Design: Descriptive laboratory study. Methods: This study involved 860 healthy recreational runners (age, 19-65 years [38.5% women]) tested on an instrumented treadmill at their preferred running speed in randomly allocated, standardized running shoes with either hard or soft cushioning. Twelve common spatiotemporal and kinetic variables-including contact time, flight time, duty factor, vertical oscillation, step cadence, step length, vertical impact peak (VIP), time to VIP, vertical average loading rate, vertical stiffness, peak vertical ground-reaction force (GRF), and peak braking force-were derived from GRF recordings. Reference values for each biomechanical variable were calculated using descriptive statistics and stratified by sex and running speed category (≤7, 8, 9, 10, 11, 12, 13, 14, and ≥15 km/h). Correlations and multiple regression analyses were performed to identify potential determinants independently associated with each biomechanical variable and generate reference equations. Results: The mean running speed was 10.5 ± 1.3 km/h and 9 ± 1.1 km/h in men and women, respectively. While all potential predictors were significantly correlated with many of the 12 biomechanical variables, only running speed showed high correlations (r > 0.7). The adjusted R2 of the multiple regression equations ranged from 0.19 to 0.88. Conclusion: This study provides reference values and equations that may guide clinicians and researchers in interpreting spatiotemporal and kinetic variables in recreational runners. Clinical Relevance: The reference values can be used as targets for clinicians working with recreational runners in cases where there is a clinical suspicion of a causal relationship between atypical biomechanics and running-related injury.

3.
Eur J Sport Sci ; 23(2): 210-220, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35014593

ABSTRACT

In a recent randomised trial investigating running shoe cushioning, injury risk was greater in recreational runners who trained in the shoe version with greater cushioning stiffness (Stiff) compared to those using the Soft version. However, vertical impact peak force (VIPF) was lower in the Stiff version. To investigate further the mechanisms involved in the protective effect of greater cushioning, the present study used an intra-subject design and analysed the differences in running kinematics and kinetics between the Stiff and Soft shoe versions on a subsample of 41 runners from the previous trial. Data were recorded in the two shoe conditions using an instrumented treadmill at 10 km.h-1. VIPF was confirmed to be lower in the Stiff version compared to the Soft version (1.39 ± 0.25 vs. 1.50 ± 0.25 BW, respectively; p = 0.009, d = 0.42), but not difference was observed in vertical loading rate (p = 0.255 and 0.897 for vertical average and instantaneous loading rate, respectively). Ankle eversion maximal velocity was not different (p = 0.099), but the Stiff version induced greater ankle negative work (-0.55 ± 0.09 vs. -0.52 ± 0.10 J.kg-1; p = 0.009, d = 0.32), maximal ankle negative power (-7.21 ± 1.90 vs. -6.96 ± 1.92 W.kg-1; p = 0.037, d = 0.13) and maximal hip extension moment (1.25 ± 0.32 vs.1.18 ± 0.30 N.m.kg-1; p = 0.009, d = 0.22). Our results suggest that the Stiff shoe version is related to increased mechanical burden for the musculoskeletal system, especially around the ankle joint.Trial registration: ClinicalTrials.gov identifier: NCT03115437.


Subject(s)
Running , Shoes , Humans , Equipment Design , Lower Extremity , Running/injuries , Ankle Joint , Biomechanical Phenomena
4.
Am J Sports Med ; 50(2): 537-544, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35049407

ABSTRACT

BACKGROUND: Running biomechanics may play a role in running-related injury development, but to date, only a few modifiable factors have been prospectively associated with injury risk. PURPOSE: To identify risk factors among spatiotemporal and ground-reaction force characteristics in recreational runners and to investigate whether shoe cushioning modifies the association between running biomechanics and injury risk. STUDY DESIGN: Case-control study; Level of evidence, 3. METHODS: Recreational runners (N = 848) were tested on an instrumented treadmill at their preferred running speed in randomly allocated, standardized running shoes (with either hard or soft cushioning). Typical kinetic and spatiotemporal metrics were derived from ground-reaction force recordings. Participants were subsequently followed up for 6 months regarding running activity and injury. Cox regression models for competing risk were used to investigate the association between biomechanical risk factors and injury risk, including stratified analyses by shoe version. RESULTS: In the crude analysis, greater injury risk was found for greater step length (subhazard rate ratio [SHR], 1.01; 95% CI, 1.00-1.02; P = .038), longer flight time (SHR, 1.00; 95% CI, 1.00-1.01; P = .028), shorter contact time (SHR, 0.99; 95% CI, 0.99-1.00; P = .030), and lower duty factor (defined as the ratio between contact time and stride time; SHR, 0.95; 95% CI, 0.91-0.98; P = .005). In the stratified analyses by shoe version, adjusted for previous injury and running speed, lower duty factor was associated with greater injury risk in those using the soft shoes (SHR, 0.92; 95% CI, 0.85-0.99; P = .042) but not in those using the hard shoes (SHR, 0.97; 95% CI, 0.91-1.04; P = .348). CONCLUSION: Lower duty factor is an injury risk factor, especially for softer shoe use. Contrary to widespread beliefs, vertical impact peak, loading rate, and step rate were not injury risk factors in recreational runners. REGISTRATION: NCT03115437 (ClinicalTrials.gov identifier).


Subject(s)
Running , Shoes , Biomechanical Phenomena , Case-Control Studies , Humans , Risk Factors , Running/injuries , Shoes/adverse effects
5.
Front Sports Act Living ; 3: 744658, 2021.
Article in English | MEDLINE | ID: mdl-34859204

ABSTRACT

Cushioning systems in running shoes are used assuming that ground impact forces relate to injury risk and that cushioning materials reduce these impact forces. In our recent trial, the more cushioned shoe version was associated with lower injury risk. However, vertical impact peak force was higher in participants with the Soft shoe version. The primary objective of this study was to investigate the effect of shoe cushioning on the time, magnitude and frequency characteristics of peak forces using frequency-domain analysis by comparing the two study groups from our recent trial (Hard and Soft shoe group, respectively). The secondary objective was to investigate if force characteristics are prospectively associated with the risk of running-related injury. This is a secondary analysis of a double-blinded randomized trial on shoe cushioning with a biomechanical running analysis at baseline and a 6-month follow-up on running exposure and injury. Participants (n = 848) were tested on an instrumented treadmill at their preferred running speed in their randomly allocated shoe condition. The vertical ground reaction force signal for each stance phase was decomposed into the frequency domain using the discrete Fourier transform. Both components were recomposed into the time domain using the inverse Fourier transform. An analysis of variance was used to compare force characteristics between the two study groups. Cox regression analysis was used to investigate the association between force characteristics and injury risk. Participants using the Soft shoes displayed lower impact peak force (p < 0.001, d = 0.23), longer time to peak force (p < 0.001, d = 0.25), and lower average loading rate (p < 0.001, d = 0.18) of the high frequency signal compared to those using the Hard shoes. Participants with low average and instantaneous loading rate of the high frequency signal had lower injury risk [Sub hazard rate ratio (SHR) = 0.49 and 0.55; 95% Confidence Interval (CI) = 0.25-0.97 and 0.30-0.99, respectively], and those with early occurrence of impact peak force (high frequency signal) had greater injury risk (SHR = 1.60; 95% CI = 1.05-2.53). Our findings may explain the protective effect of the Soft shoe version previously observed. The present study also demonstrates that frequency-domain analyses may provide clinically relevant impact force characteristics. Clinical Trial Registration: https://clinicaltrials.gov/, identifier: 9NCT03115437.

6.
Eur J Sport Sci ; 21(7): 985-993, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32781913

ABSTRACT

AbstractIn a recent randomized trial including 800+ recreational runners, injury risk was lower in those who received the Soft shoe version compared to those using the Hard version (Hazard ratio = 1.52; 95% Confidence Interval = 1.07-2.16). Here, we investigated the effect of shoe cushioning on ground reaction forces (GRF) and spatiotemporal parameters in the same cohort, with a special focus on Vertical Impact Peak Force (VIPF) and Vertical Instantaneous Loading Rate (VILR). Healthy runners (n = 848) randomly received one of two shoe prototypes that differed only in their cushioning properties (Global stiffness: 61 ± 3 and 95 ± 6 N/mm in the Soft and Hard versions, respectively). Participants were tested on an instrumented treadmill at their preferred running speed. GRF data was recorded over 2 min. VIPF was higher in the Soft shoe group compared to the Hard shoe group (1.53 ± 0.21 vs. 1.44 ± 0.23 BW, respectively; p < 0.001). However, the proportion of steps with detectable VIPF was lower in the Soft shoe group (84 vs. 97%, respectively; p < 0.001) and Time to VIPF was longer (46.9 ± 8.5 vs. 43.4 ± 7.4 milliseconds, respectively; p < 0.001). No significant differences were observed for VILR (60.1 ± 13.8 vs. 58.9 ± 15.6 BW/s for Soft and Hard shoe group, respectively; p = 0.070) or any other kinetic variable. These results show that the beneficial effect of greater shoe cushioning on injury risk in the present cohort is not associated with attenuated VIPF and VILR. These GRF metrics may be inappropriate markers of the shoe cushioning-injury risk relationship, while delayed VIPF and the proportion of steps displaying a VIPF could be more relevant.Trial registration: ClinicalTrials.gov identifier: NCT03115437..


Subject(s)
Equipment Design , Running/physiology , Shoes , Adult , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Risk Factors , Running/injuries , Single-Blind Method
7.
Scand J Med Sci Sports ; 30(12): 2399-2407, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32767716

ABSTRACT

The main objective was to investigate whether the cumulative load of the lower limbs, defined as the product of external load and step rate, could be predicted using spatiotemporal variables gathered with a commercially available wearable device in running. Therefore, thirty-nine runners performed two running tests at 10 and 12 km/h, respectively. Spatiotemporal variables (step rate, ground contact time, and vertical oscillation) were collected using a commercially available wearable device. Kinetic variables, measured with gold standard equipment (motion capture system and instrumented treadmill) and used for the calculation of a set of variables representing cumulative load, were peak vertical ground reaction force (peak vGRF), vertical instantaneous loading rate (VILR), vertical impulse, braking impulse, as well as peak extension moments and angular impulses of the ankle, knee and hip joints. Separate linear mixed-effects models were built to investigate the prediction performance of the spatiotemporal variables for each measure of cumulative load. BMI, speed, and sex were included as covariates. Predictive precision of the models ranged from .11 to .66 (R2 m ) and .22 to .98 (R2 c ), respectively. Greatest predictive performance was obtained for the cumulative peak vGRF (R2 m  = .66, R2 c  = .97), VILR (R2 m  = .43, R2 c  = .97), braking impulse (R2 m  = .52, R2 c  = .98), and peak hip extension moment (R2 m  = .54, R2 c  = .90). In conclusion, certain variables representing cumulative load of the lower limbs in running can be predicted using spatiotemporal variables gathered with a commercially available wearable device.


Subject(s)
Fitness Trackers , Lower Extremity/physiology , Running/physiology , Adult , Ankle Joint/physiology , Biomechanical Phenomena , Body Mass Index , Female , Hip Joint/physiology , Humans , Knee Joint/physiology , Male , Middle Aged , Sex Factors , Time and Motion Studies
8.
Gait Posture ; 60: 251-257, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29309971

ABSTRACT

Our study aimed to evaluate the effect of cognitive challenge on double-leg postural control under visual and surface perturbations of patients with anterior cruciate ligament reconstruction (ACLR) cleared to return to sport. Double-leg stance postural control of 19 rehabilitated patients with ACLR (age: 24.8 ±â€¯6.7 years, time since surgery: 9.2 ±â€¯1.6 months) and 21 controls (age: 24.9 ±â€¯3.7 years) was evaluated in eight randomized situations combining two cognitive (with and without silent backward counting in steps of seven), two visual (eyes open, eyes closed) and two surface (stable support, foam support) conditions. Sway area and sway path of the centre of foot pressure were measured during three 20-s recordings for each situation. Higher values indicated poorer postural control. Generally, postural control of patients with ACLR and controls was similar for sway area and sway path (p > 0.05). The lack of visual anchorage and the disturbance of the plantar input by the foam support increased sway area and sway path (p < 0.001) similarly in both groups. The addition of the cognitive task decreased sway area and sway path (p < 0.001) similarly in both groups. Patients with ACLR who recently completed their rehabilitation have normalized postural control during double-leg stance tests. The use of a dual task paradigm under increased task complexity modified postural control, but in a similar way in patients with ACLR than in healthy controls. Double-leg stance tests, even under challenging conditions, are not sensitive enough to reveal postural control differences between rehabilitated patients with ACLR and controls.


Subject(s)
Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Reconstruction/methods , Cognition/physiology , Postural Balance/physiology , Sports/physiology , Anterior Cruciate Ligament Injuries/physiopathology , Case-Control Studies , Female , Humans , Male , Single-Blind Method , Young Adult
9.
Knee Surg Sports Traumatol Arthrosc ; 26(2): 381-390, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28712025

ABSTRACT

PURPOSE: Asymmetries in knee joint biomechanics and increased knee joint laxity in patients following anterior cruciate ligament reconstruction (ACLR) are considered risk factors for re-tear or early onset of osteoarthritis. Nevertheless, the relationship between these factors has not been established. The aim of the study was to compare knee mechanics during landing from a bilateral drop vertical jump in patients following ACLR and control participants and to study the relationship between side-to-side asymmetries in landing mechanics and knee joint laxity. METHODS: Seventeen patients following ACLR were evaluated and compared to 28 healthy controls. Knee sagittal and frontal plane kinematics and kinetics were evaluated using three-dimensional motion capture (200 Hz) and two synchronized force platforms (1000 Hz). Static anterior and internal rotation knee laxities were measured for both groups and legs using dedicated arthrometers. Group and leg differences were investigated using a mixed model analysis of variance. The relationship between side-to-side differences in sagittal knee power/energy absorption and knee joint laxities was evaluated using univariate linear regression. RESULTS: A significant group-by-leg interaction (p = 0.010) was found for knee sagittal plane energy absorption, with patients having 25% lower values in their involved compared to their non-involved leg (1.22 ± 0.39 vs. 1.62 ± 0.40 J kg-1). Furthermore, knee sagittal plane energy absorption was 18% lower at their involved leg compared to controls (p = 0.018). Concomitantly, patients demonstrated a 27% higher anterior laxity of the involved knee compared to the non-involved knee, with an average side-to-side difference of 1.2 mm (p < 0.001). Laxity of the involved knee was also 30% higher than that of controls (p < 0.001) (leg-by-group interaction: p = 0.002). No relationship was found between sagittal plane energy absorption and knee laxity. CONCLUSIONS: Nine months following surgery, ACLR patients were shown to employ a knee unloading strategy of their involved leg during bilateral landing. However, this strategy was unrelated to their increased anterior knee laxity. Side-to-side asymmetries during simple bilateral landing tasks may put ACLR patients at increased risk of second ACL injury or early-onset osteoarthritis development. Detecting and correcting asymmetric landing strategies is highly relevant in the framework of personalized rehabilitation, which calls for complex biomechanical analyses to be applied in clinical routine. LEVEL OF EVIDENCE: III.


Subject(s)
Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Reconstruction , Joint Instability/etiology , Knee Joint/physiopathology , Postoperative Complications/etiology , Adolescent , Adult , Biomechanical Phenomena , Case-Control Studies , Female , Humans , Joint Instability/physiopathology , Male , Movement , Postoperative Complications/physiopathology , Rotation , Young Adult
10.
PLoS One ; 12(10): e0186297, 2017.
Article in English | MEDLINE | ID: mdl-29020108

ABSTRACT

We aim to determine the influence of sports floorings and sports shoes on impact mechanics and performance during standardised jump tasks. Twenty-one male volunteers performed ankle jumps (four consecutive maximal bounds with very dynamic ankle movements) and multi-jumps (two consecutive maximal counter-movement jumps) on force plates using minimalist and cushioned shoes under 5 sports flooring (SF) conditions. The shock absorption properties of the SF, defined as the proportion of peak impact force absorbed by the tested flooring when compared with a concrete hard surface, were: SF0 = 0% (no flooring), SF1 = 19%, SF2 = 26%, SF3 = 37% and SF4 = 45%. Shoe and flooring effects were compared using 2x5 repeated-measures ANOVA with post-hoc Bonferroni-corrected comparisons. A significant interaction between SF and shoe conditions was found for VILR only (p = 0.003). In minimalist shoes, SF influenced Vertical Instantaneous Loading Rate (VILR) during ankle jumps (p = 0.006) and multi-jumps (p<0.001), in accordance with shock absorption properties. However, in cushioned shoes, SF influenced VILR during ankle jumps only (p<0.001). Contact Time was the only additional variable affected by SF, but only during multi-jumps in minimalist shoes (p = 0.037). Cushioned shoes induced lower VILR (p<0.001) and lower Contact Time (p≤0.002) during ankle jumps and multi-jumps compared to minimalist shoes. During ankle jumps, cushioned shoes induced greater Peak Vertical Ground Reaction Force (PVGRF, p = 0.002), greater Vertical Average Loading Rate (p<0.001), and lower eccentric (p = 0.008) and concentric (p = 0.004) work. During multi-jumps, PVGRF was lower (p<0.001) and jump height was higher (p<0.001) in cushioned compared to minimalist shoes. In conclusion, cushioning influenced impact forces during standardised jump tasks, whether it was provided by the shoes or the sports flooring. VILR is the variable that was the most affected.


Subject(s)
Floors and Floorcoverings , Locomotion/physiology , Shoes , Sports , Task Performance and Analysis , Adult , Ankle/physiology , Biomechanical Phenomena , Humans
11.
J Sci Med Sport ; 20(8): 734-739, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28365220

ABSTRACT

OBJECTIVES: While several cross-sectional studies have investigated the acute effects of shoe drop on running biomechanics, the long-term consequences are currently unknown. This study aimed to investigate if the drop of standard cushioned shoes induces specific adaptations in running technique over a six-month period in leisure-time runners. DESIGN: Double-blinded randomised controlled trial. METHODS: The participants (n=59) received a pair of shoes with a heel-to-toe drop of 10mm (D10), 6mm (D6) or 0mm (D0) and were followed-up regarding running training over 6 months or 500km, whichever came first. Spatio-temporal variables and kinematics (foot/ground, ankle and knee joint angles) were investigated while running at preferred speed on a treadmill before and after the follow-up. RESULTS: The participants ran 332±178km in the study shoes between pre- and post-tests. There was no shoe version by time interaction for any of the spatio-temporal variables nor for lower limb angles at initial ground contact. A small but significant shoe drop effect was found for knee abduction at mid-stance (p=0.032), as it decreased for the D0 version (-0.3±3.1 vs. -1.3±2.6°) while it increased for the D6 (0.3±2.7 vs. 1.3±3.1°) and D10 version (-0.2±3.2 vs. 0.5±3.1°). However, none of the pairwise comparisons was significant in the post-hoc analysis. CONCLUSIONS: Apart from knee abduction at mid-stance, no specific adaptation in spatio-temporal variables and kinematics was found between the three shoe versions during this 6-month follow-up. Thus, shoe drop of standard cushioned shoes does not seem to influence running biomechanics in the long term.


Subject(s)
Running/physiology , Shoes , Adult , Ankle Joint/physiology , Biomechanical Phenomena , Double-Blind Method , Equipment Design/methods , Female , Foot/physiology , Humans , Knee Joint/physiology , Male , Middle Aged , Risk
12.
PLoS One ; 11(5): e0155277, 2016.
Article in English | MEDLINE | ID: mdl-27166929

ABSTRACT

Muscle activation during landing is paramount to stabilise lower limb joints and avoid abnormal movement patterns. Delayed muscle activity onset measured by electromyography (EMG) has been suggested to be associated with anterior cruciate ligament (ACL) injury. Therefore, the aim of this systematic review and meta-analysis was to test the hypothesis if ACL-injured patients display different results for muscle onset timing during standard deceleration tasks compared to healthy control participants. PubMed, Embase, Scopus and ScienceDirect databases were systematically searched over the period from January 1980 to February 2015, yielding a total of 1461 citations. Six studies meeting inclusion criteria underwent quality assessment, data extraction and re-computing procedures for the meta-analysis. The quality was rated "moderate" for 2 studies and "poor" for 4. Patients included and procedures used were highly heterogeneous. The tasks investigated were single leg hopping, decelerating from running or walking, tested on a total of 102 ACL-injured participants and 86 controls. EMG analyses of the muscles vastus lateralis, vastus medialis, lateral and medial hamstrings revealed trivial and non-significant standardised mean differences (SMD<0.20; p>0.05) between patients and control participants. Furthermore, no differences were found between the contralateral leg of patients and controls for muscle activity onset of the medial and lateral gastrocnemius (SMD<0.20; p>0.05). Based on 3 studies, the involved legs of ACL-injured patients showed overall earlier muscle activity onset compared to control participants for the medial gastrocnemius (SMD = 0.5; p = 0.05). Similar results were found for the lateral gastrocnemius (SMD = 2.1; p<0.001), with a greater effect size but based only on a single study. We conclude that there are no differences between leg muscles of ACL-injured patients and healthy controls regarding the muscle activity onset during landing. However, current evidence is scarce and weak, which highlights the need for further research in this area.


Subject(s)
Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament/physiopathology , Athletic Injuries/physiopathology , Muscle, Skeletal/physiopathology , Running/injuries , Walking/injuries , Adolescent , Adult , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/rehabilitation , Anterior Cruciate Ligament Injuries/surgery , Athletic Injuries/rehabilitation , Athletic Injuries/surgery , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Range of Motion, Articular/physiology , Recovery of Function/physiology , Sports , Stress, Mechanical
13.
Gait Posture ; 39(1): 455-9, 2014.
Article in English | MEDLINE | ID: mdl-24054346

ABSTRACT

Running biomechanics has received increasing interest in recent literature on running-related injuries, calling for new, portable methods for large-scale measurements. Our aims were to define running strike pattern based on output of a new pressure-sensitive measurement device, the Runalyser, and to test its validity regarding temporal parameters describing running gait. Furthermore, reliability of the Runalyser measurements was evaluated, as well as its ability to discriminate different running styles. Thirty-one healthy participants (30.3 ± 7.4 years, 1.78 ± 0.10 m and 74.1 ± 12.1 kg) were involved in the different study parts. Eleven participants were instructed to use a rearfoot (RFS), midfoot (MFS) and forefoot (FFS) strike pattern while running on a treadmill. Strike pattern was subsequently defined using a linear regression (R(2)=0.89) between foot strike angle, as determined by motion analysis (1000 Hz), and strike index (SI, point of contact on the foot sole, as a percentage of foot sole length), as measured by the Runalyser. MFS was defined by the 95% confidence interval of the intercept (SI=43.9-49.1%). High agreement (overall mean difference 1.2%) was found between stance time, flight time, stride time and duty factor as determined by the Runalyser and a force-measuring treadmill (n=16 participants). Measurements of the two devices were highly correlated (R ≥ 0.80) and not significantly different. Test-retest intra-class correlation coefficients for all parameters were ≥ 0.94 (n=14 participants). Significant differences (p<0.05) between FFS, RFS and habitual running were detected regarding SI, stance time and stride time (n=24 participants). The Runalyser is suitable for, and easily applicable in large-scale studies on running biomechanics.


Subject(s)
Foot Orthoses , Foot/physiology , Gait/physiology , Monitoring, Physiologic/instrumentation , Pressure , Running/physiology , Adult , Biomechanical Phenomena , Female , Humans , Male , Reproducibility of Results , Stress, Mechanical , Weight-Bearing/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...