Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Nucleic Acids Res ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166476

ABSTRACT

Prokaryotic CRISPR-Cas immune systems detect and cleave foreign nucleic acids. In type III CRISPR-Cas systems, the Cas10 subunit of the activated recognition complex synthesizes cyclic oligoadenylates (cOAs), second messengers that activate downstream ancillary effector proteins. Once the viral attack has been weathered, elimination of extant cOA is essential to limit the antiviral response and to allow cellular recovery. Various families of ring nucleases have been identified, specializing in the degradation of cOAs either as standalone enzymes or as domains of effector proteins. Here we describe the ring nuclease activity inherent in the SAVED domain of the cA4-activated CRISPR Lon protease CalpL. We characterize the kinetics of cA4 cleavage and identify key catalytic residues. We demonstrate that cA4-induced oligomerization of CalpL is essential not only for activation of the protease, but is also required for nuclease activity. Further, the nuclease activity of CalpL poses a limitation to the protease reaction, indicating a mechanism for regulation of the CalpL/T/S signaling cascade. This work is the first demonstration of a catalytic SAVED domain and gives new insights into the dynamics of transcriptional adaption in CRISPR defense systems.

2.
Nat Commun ; 15(1): 6597, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097586

ABSTRACT

Cyclin-dependent kinase 7 (Cdk7) is required in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of transcription factor TFIIH. Cdk7 forms active complexes by associating with Cyclin H and Mat1, and is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates basic residues conserved in other CDKs, pS164 nucleates an arginine network unique to the ternary Cdk7 complex, involving all three subunits. We identify differential dependencies of kinase activity and substrate recognition on the individual phosphorylations. CAK function is unaffected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by T170 phosphorylation. Moreover, dual T-loop phosphorylation stimulates multisite phosphorylation of the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7 activation is a two-step process wherein S164 phosphorylation precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing processivity, while pT170 enhances activity towards key transcriptional substrates.


Subject(s)
Cyclin-Dependent Kinase-Activating Kinase , Cyclin-Dependent Kinases , Phosphorylation , Humans , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/chemistry , Cyclin-Dependent Kinases/genetics , Cyclin H/metabolism , Cyclin H/chemistry , Cyclin H/genetics , Crystallography, X-Ray , RNA Polymerase II/metabolism , RNA Polymerase II/chemistry , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/chemistry , Transcription Factor TFIIH/genetics , Models, Molecular , Transcription Factors/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Protein Domains , Cell Cycle Proteins
3.
Br J Dermatol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39026424

ABSTRACT

BACKGROUND: Monilethrix is a rare hereditary hair disorder that is characterised by a beaded hair shaft structure and increased hair fragility. Patients may also present with keratosis pilaris and nail changes. Research has identified three genes for autosomal-dominant monilethrix (KRT81, KRT83, and KRT86), and one gene for the autosomal-recessive form (DSG4). OBJECTIVES: To investigate the genetic basis of autosomal-dominant monilethrix in families with no pathogenic variants in any of the known monilethrix genes, and to understand the mechanistic basis of variant pathogenicity using a cellular model. METHODS: Nine affected individuals from four unrelated families were included in this study. A clinical diagnosis of monilethrix was assigned based on clinical examination and/or trichoscopy. Exome sequencing (ES) was performed in six individuals to identify pathogenic variants, and Sanger sequencing was used for co-segregation and haplotype analyses. Cell culture experiments (immunoblotting, immunofluorescence, and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analyses) were used to confirm variant pathogenicity, to determine expression and subcellular localisation of proteins, and to identify a possible nonsense-mediated mRNA decay. RESULTS: In six affected individuals with clinically suggested monilethrix, ES led to the identification of the nonsense variant c.1081G>T; p.(Glu361*) in KRT31, which was subsequently identified in other affected members of these families by Sanger sequencing. This variant led to the abolition of both the last three amino acids of the 2B subdomain and the complete C-terminal tail domain of keratin 31. Immunoblotting demonstrated that when co-expressed with its binding partner keratin 85, the truncated keratin 31 was still expressed, albeit less abundantly than the wild type protein. Immunofluorescence revealed that p.(Glu361*) keratin 31 had an altered cytoskeletal localisation and formed vesicular-like structures in the cell cytoplasm near the cell membrane. RT-qPCR analysis did not generate evidence for a nonsense mediated decay of the mutant transcript. CONCLUSIONS: This study is the first to identify pathogenic variants in KRT31 as a cause of autosomal-dominant monilethrix. This highlights the importance of hair keratin proteins in hair biology, and will increase the molecular diagnostic yield for rare ectodermal phenotypes of hair and nail tissues.

4.
J Exp Med ; 221(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38530241

ABSTRACT

NLRP3-associated autoinflammatory disease is a heterogenous group of monogenic conditions caused by NLRP3 gain-of-function mutations. The poor functional characterization of most NLRP3 variants hinders diagnosis despite efficient anti-IL-1 treatments. Additionally, while NLRP3 is controlled by priming and activation signals, gain-of-functions have only been investigated in response to priming. Here, we characterize 34 NLRP3 variants in vitro, evaluating their activity upon induction, priming, and/or activation signals, and their sensitivity to four inhibitors. We highlight the functional diversity of the gain-of-function mutants and describe four groups based on the signals governing their activation, correlating partly with the symptom severity. We identify a new group of NLRP3 mutants responding to the activation signal without priming, associated with frequent misdiagnoses. Our results identify key NLRP3 residues controlling inflammasome activity and sensitivity to inhibitors, and antagonistic mechanisms with broader efficacy for therapeutic strategies. They provide new insights into NLRP3 activation, an explanatory mechanism for NLRP3-AID heterogeneity, and original tools for NLRP3-AID diagnosis and drug development.


Subject(s)
Gain of Function Mutation , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Gain of Function Mutation/genetics , Inflammasomes/genetics , Drug Development , Syndrome
5.
J Biol Chem ; 300(3): 105698, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301887

ABSTRACT

Nuclear actin has been demonstrated to be essential for optimal transcription, but the molecular mechanisms and direct binding partner for actin in the RNA polymerase complex have remained unknown. By using purified proteins in a variety of biochemical assays, we demonstrate a direct and specific interaction between monomeric actin and Cdk9, the kinase subunit of the positive transcription elongation factor b required for RNA polymerase II pause-release. This interaction efficiently prevents actin polymerization, is not dependent on kinase activity of Cdk9, and is not involved with releasing positive transcription elongation factor b from its inhibitor 7SK snRNP complex. Supporting the specific role for actin in the elongation phase of transcription, chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) reveals that actin interacts with genes only upon their active transcription elongation. This study therefore provides novel insights into the mechanisms by which actin facilitates the transcription process.


Subject(s)
Actins , Cyclin-Dependent Kinase 9 , Positive Transcriptional Elongation Factor B , Humans , Actins/genetics , Actins/metabolism , Cyclin-Dependent Kinase 9/genetics , Cyclin-Dependent Kinase 9/metabolism , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic
6.
Bioorg Med Chem Lett ; 102: 129675, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38417632

ABSTRACT

NLRP3 is an intracellular sensor protein that detects a broad range of danger signals and environmental insults. Its activation results in a protective pro-inflammatory response designed to impair pathogens and repair tissue damage via the formation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent secretory release of the pro-inflammatory cytokines IL-1ß and IL-18 as well as to gasdermin d-mediated pyroptotic cell death. Herein, we describe the discovery of a novel indazole series of high affinity, reversible inhibitors of NLRP3 activation through screening of DNA-encoded libraries and the potent lead compound 3 (BAL-0028, IC50 = 25 nM) that was identified directly from the screen. SPR studies showed that compound 3 binds tightly (KD range 104-123 nM) to the NACHT domain of NLRP3. A CADD analysis of the interaction of compound 3 with the NLRP3 NACHT domain proposes a binding site that is distinct from those of ADP and MCC950 and includes specific site interactions. We anticipate that compound 3 (BAL-0028) and other members of this novel indazole class of neutral inhibitors will demonstrate significantly different physical, biochemical, and biological properties compared to NLRP3 inhibitors previously identified.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Sulfonamides , Cytokines/metabolism , Interleukin-1beta/metabolism , Caspase 1 , DNA
7.
bioRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38405971

ABSTRACT

Cyclin-dependent kinase 7 (Cdk7) occupies a central position in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of the general transcription factor TFIIH. Cdk7 forms an active complex upon association with Cyclin H and Mat1, and its catalytic activity is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the fully activated human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates a set of basic residues conserved in other CDKs, pS164 nucleates an arginine network involving all three subunits that is unique to the ternary Cdk7 complex. We identify differential dependencies of kinase activity and substrate recognition on individual phosphorylations within the Cdk7 T loop. The CAK function of Cdk7 is not affected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by phosphorylation at T170. Moreover, dual T-loop phosphorylation at both T170 and S164 stimulates multi-site phosphorylation of transcriptional substrates-the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and the SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7-regulatory phosphorylation is a two-step process in which phosphorylation of S164 precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing Cdk7 processivity, while the canonical pT170 enhances kinase activity towards critical substrates involved in transcription.

8.
Cancer Res ; 84(5): 725-740, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38175774

ABSTRACT

Aberrations of the fibroblast growth factor receptor (FGFR) family members are frequently observed in metastatic urothelial cancer (mUC), and blocking the FGF/FGFR signaling axis is used as a targeted therapeutic strategy for treating patients. Erdafitinib is a pan-FGFR inhibitor, which has recently been approved by the FDA for mUC with FGFR2/3 alterations. Although mUC patients show initial response to erdafitinib, acquired resistance rapidly develops. Here, we found that adipocyte precursors promoted resistance to erdafitinib in FGFR-dependent bladder and lung cancer in a paracrine manner. Moreover, neuregulin 1 (NRG1) secreted from adipocyte precursors was a mediator of erdafitinib resistance by activating human epidermal growth factor receptor 3 (ERBB3; also known as HER3) signaling, and knockdown of NRG1 in adipocyte precursors abrogated the conferred paracrine resistance. NRG1 expression was significantly downregulated in terminally differentiated adipocytes compared with their progenitors. Pharmacologic inhibition of the NRG1/HER3 axis using pertuzumab reversed erdafitinib resistance in tumor cells in vitro and prolonged survival of mice bearing bladder cancer xenografts in vivo. Remarkably, data from single-cell RNA sequencing revealed that NRG1 was enriched in platelet-derived growth factor receptor-A (PDGFRA) expressing inflammatory cancer-associated fibroblasts, which is also expressed on adipocyte precursors. Together, this work reveals a paracrine mechanism of anti-FGFR resistance in bladder cancer, and potentially other cancers, that is amenable to inhibition using available targeted therapies. SIGNIFICANCE: Acquired resistance to FGFR inhibition can be rapidly promoted by paracrine activation of the NRG1/HER3 axis mediated by adipocyte precursors and can be overcome by the combination of pertuzumab and erdafitinib treatment. See related commentary by Kolonin and Anastassiou, p. 648.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Mice , Animals , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Carcinoma, Transitional Cell/pathology , Neuregulin-1 , Receptors, Fibroblast Growth Factor , Signal Transduction , Protein Kinase Inhibitors/pharmacology
9.
Immunology ; 171(2): 181-197, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37885279

ABSTRACT

Haemolytic disorders, such as sickle cell disease, are accompanied by the release of high amounts of labile heme into the intravascular compartment resulting in the induction of proinflammatory and prothrombotic complications in affected patients. In addition to the relevance of heme-regulated proteins from the complement and blood coagulation systems, activation of the TLR4 signalling pathway by heme was ascribed a crucial role in the progression of these pathological processes. Heme binding to the TLR4-MD2 complex has been proposed recently, however, essential mechanistic information of the processes at the molecular level, such as heme-binding kinetics, the heme-binding capacity and the respective heme-binding sites (HBMs) is still missing. We report the interaction of TLR4, MD2 and the TLR4-MD2 complex with heme and the consequences thereof by employing biochemical, spectroscopic, bioinformatic and physiologically relevant approaches. Heme binding occurs transiently through interaction with up to four HBMs in TLR4, two HBMs in MD2 and at least four HBMs in their complex. Functional studies highlight that mutations of individual HBMs in TLR4 preserve full receptor activation by heme, suggesting that heme interacts with TLR4 through different binding sites independently of MD2. Furthermore, we confirm and extend the major role of TLR4 for heme-mediated cytokine responses in human immune cells.


Subject(s)
Signal Transduction , Toll-Like Receptor 4 , Humans , Toll-Like Receptor 4/metabolism , Binding Sites , Cytokines/metabolism , Lymphocyte Antigen 96/metabolism , Lipopolysaccharides
10.
J Biol Chem ; 300(1): 105501, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38016516

ABSTRACT

Inhibition of cyclin-dependent kinases (CDKs) has evolved as an emerging anticancer strategy. In addition to the cell cycle-regulating CDKs, the transcriptional kinases Cdk12 and Cdk13 have become the focus of interest as they mediate a variety of functions, including the transition from transcription initiation to elongation and termination, precursor mRNA splicing, and intronic polyadenylation. Here, we determine the crystal structure of the small molecular inhibitor SR-4835 bound to the Cdk12/cyclin K complex at 2.68 Å resolution. The compound's benzimidazole moiety is embedded in a unique hydrogen bond network mediated by the kinase hinge region with flanking hydroxy groups of the Y815 and D819 side chains. Whereas the SR-4835 head group targets the adenine-binding pocket, the kinase's glycine-rich loop is shifted down toward the activation loop. Additionally, the αC-helix adopts an inward conformation, and the phosphorylated T-loop threonine interacts with all three canonical arginines, a hallmark of CDK activation that is altered in Cdk12 and Cdk13. Dose-response inhibition measurements with recombinant CMGC kinases show that SR-4835 is highly specific for Cdk12 and Cdk13 following a 10-fold lower potency for Cdk10. Whereas other CDK-targeting compounds exhibit tighter binding affinities and higher potencies for kinase inhibition, SR-4835 can be considered a selective transcription elongation antagonist. Our results provide the basis for a rational improvement of SR-4835 toward Cdk12 inhibition and a gain in selectivity over other transcription regulating CDKs.


Subject(s)
Cyclin-Dependent Kinases , Cyclins , Polyadenylation , Cyclins/metabolism , Molecular Conformation , Humans , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/chemistry
11.
Nat Commun ; 14(1): 7923, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040708

ABSTRACT

Human Gasdermin D (GSDMD) is a key mediator of pyroptosis, a pro-inflammatory form of cell death occurring downstream of inflammasome activation as part of the innate immune defence. Upon cleavage by inflammatory caspases in the cytosol, the N-terminal domain of GSDMD forms pores in the plasma membrane resulting in cytokine release and eventually cell death. Targeting GSDMD is an attractive way to dampen inflammation. In this study, six GSDMD targeting nanobodies are characterized in terms of their binding affinity, stability, and effect on GSDMD pore formation. Three of the nanobodies inhibit GSDMD pore formation in a liposome leakage assay, although caspase cleavage was not perturbed. We determine the crystal structure of human GSDMD in complex with two nanobodies at 1.9 Å resolution, providing detailed insights into the GSDMD-nanobody interactions and epitope binding. The pore formation is sterically blocked by one of the nanobodies that binds to the oligomerization interface of the N-terminal domain in the multi-subunit pore assembly. Our biochemical and structural findings provide tools for studying inflammasome biology and build a framework for the design of GSDMD targeting drugs.


Subject(s)
Inflammasomes , Single-Domain Antibodies , Humans , Caspases/metabolism , Gasdermins , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Pyroptosis , Single-Domain Antibodies/metabolism
12.
Nucleic Acids Res ; 51(21): 11893-11910, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37831086

ABSTRACT

RIG-I is a cytosolic receptor of viral RNA essential for the immune response to numerous RNA viruses. Accordingly, RIG-I must sensitively detect viral RNA yet tolerate abundant self-RNA species. The basic binding cleft and an aromatic amino acid of the RIG-I C-terminal domain(CTD) mediate high-affinity recognition of 5'triphosphorylated and 5'base-paired RNA(dsRNA). Here, we found that, while 5'unmodified hydroxyl(OH)-dsRNA demonstrated residual activation potential, 5'-monophosphate(5'p)-termini, present on most cellular RNAs, prevented RIG-I activation. Determination of CTD/dsRNA co-crystal structures and mutant activation studies revealed that the evolutionarily conserved I875 within the CTD sterically inhibits 5'p-dsRNA binding. RIG-I(I875A) was activated by both synthetic 5'p-dsRNA and endogenous long dsRNA within the polyA-rich fraction of total cellular RNA. RIG-I(I875A) specifically interacted with long, polyA-bearing, mitochondrial(mt) RNA, and depletion of mtRNA from total RNA abolished its activation. Altogether, our study demonstrates that avoidance of 5'p-RNA recognition is crucial to prevent mtRNA-triggered RIG-I-mediated autoinflammation.


Subject(s)
DEAD Box Protein 58 , Isoleucine , Receptors, Immunologic , DEAD Box Protein 58/chemistry , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Immune Tolerance , Isoleucine/genetics , RNA, Double-Stranded/genetics , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Humans , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
13.
Br J Dermatol ; 189(6): 741-749, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37671665

ABSTRACT

BACKGROUND: Short anagen hair (SAH) is a rare paediatric hair disorder characterized by a short anagen phase, an inability to grow long scalp hair and a negative psychological impact. The genetic basis of SAH is currently unknown. OBJECTIVES: To perform molecular genetic investigations in 48 individuals with a clinical phenotype suggestive of SAH to identify, if any, the genetic basis of this condition. METHODS: Exome sequencing was performed in 27 patients diagnosed with SAH or with a complaint of short, nongrowing hair. The cohort was screened for variants with a minor allele frequency (MAF) < 5% in the general population and a Combined Annotation Dependent Depletion (CADD) score > 15, to identify genes whose variants were enriched in this cohort. Sanger sequencing was used for variant validation and screening of 21 additional individuals with the same clinical diagnosis and their relatives. Genetic association testing of SAH-related variants for male pattern hair loss (MPHL) was performed using UK Biobank data. RESULTS: Analyses revealed that 20 individuals (42%) carried mono- or biallelic pathogenic variants in WNT10A. Rare WNT10A variants are associated with a phenotypic spectrum ranging from no clinical signs to severe ectodermal dysplasia. A significant association was found between WNT10A and SAH, and this was mostly observed in individuals with light-coloured hair and regression of the frontoparietal hairline. Notably, the most frequent variant in the cohort [c.682T>A;p.(Phe228Ile)] was in linkage disequilibrium with four common WNT10A variants, all of which have a known association with MPHL. Using UK Biobank data, our analyses showed that c.682T>A;p.(Phe228Ile) and one other variant identified in the SAH cohort are also associated with MPHL, and partially explain the known associations between WNT10A and MPHL. CONCLUSIONS: Our results suggest that WNT10A is associated with SAH and that SAH has a genetic overlap with the common phenotype MPHL. The presumed shared biologic effect of WNT10A variants in SAH and MPHL is a shortening of the anagen phase. Other factors, such as modifier genes and sex, may also play a role in the clinical manifestation of hair phenotypes associated with the WNT10A locus.


Subject(s)
Ectodermal Dysplasia , Hair , Humans , Male , Child , Alopecia , Phenotype , Ectodermal Dysplasia/genetics , Gene Frequency , Wnt Proteins/genetics
14.
ACS Chem Biol ; 18(8): 1748-1759, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37366538

ABSTRACT

Nonheme diiron monooxygenases (NHDMs) interact with nonribosomal peptide synthetase (NRPS) assembly lines to install ß-hydroxylations at thiolation-domain-bound amino acids during nonribosomal peptide biosynthesis. The high potential of this enzyme family to diversify the products of engineered assembly lines is disproportionate to the currently small knowledge about their structures and mechanisms of substrate recognition. Here, we report the crystal structure of FrsH, the NHDM which catalyzes the ß-hydroxylation of l-leucines during biosynthesis of the depsipeptide G protein inhibitor FR900359. Using biophysical approaches, we provide evidence that FrsH interacts with the cognate monomodular NRPS FrsA. By AlphaFold modeling and mutational studies, we detect and examine structural features within the assembly line crucial to recruit FrsH for leucine ß-hydroxylation. These are, in contrast to cytochrome-dependent NRPS ß-hydroxylases, not located on the thiolation domain, but on the adenylation domain. FrsH can be functionally substituted by homologous enzymes from biosyntheses of the cell-wall-targeting antibiotics lysobactin and hypeptin, indicating that these features are generally applicable to members of the family of trans-acting NHDMs. These insights give important directions for the construction of artificial assembly lines to yield bioactive and chemically complex peptide products.


Subject(s)
Mixed Function Oxygenases , Peptide Biosynthesis, Nucleic Acid-Independent , Mixed Function Oxygenases/metabolism , Amino Acids/chemistry , Anti-Bacterial Agents , Peptide Synthases/metabolism
15.
Science ; 380(6642): eabn7625, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37079685

ABSTRACT

RNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We found that disrupted nuclear RNA surveillance is oncogenic. Cyclin-dependent kinase 13 (CDK13) is mutated in melanoma, and patient-mutated CDK13 accelerates zebrafish melanoma. CDK13 mutation causes aberrant RNA stabilization. CDK13 is required for ZC3H14 phosphorylation, which is necessary and sufficient to promote nuclear RNA degradation. Mutant CDK13 fails to activate nuclear RNA surveillance, causing aberrant protein-coding transcripts to be stabilized and translated. Forced aberrant RNA expression accelerates melanoma in zebrafish. We found recurrent mutations in genes encoding nuclear RNA surveillance components in many malignancies, establishing nuclear RNA surveillance as a tumor-suppressive pathway. Activating nuclear RNA surveillance is crucial to avoid accumulation of aberrant RNAs and their ensuing consequences in development and disease.


Subject(s)
CDC2 Protein Kinase , Carcinogens , Melanoma , RNA Stability , RNA, Nuclear , Skin Neoplasms , Animals , CDC2 Protein Kinase/genetics , Melanoma/genetics , Mutation , RNA, Nuclear/genetics , Skin Neoplasms/genetics , Zebrafish , Humans
16.
Nature ; 614(7946): 168-174, 2023 02.
Article in English | MEDLINE | ID: mdl-36423657

ABSTRACT

CRISPR defence systems such as the well-known DNA-targeting Cas9 and the RNA-targeting type III systems are widespread in prokaryotes1,2. The latter orchestrates a complex antiviral response that is initiated through the synthesis of cyclic oligoadenylates after recognition of foreign RNA3-5. Among the large set of proteins that are linked to type III systems and predicted to bind cyclic oligoadenylates6,7, a CRISPR-associated Lon protease (CalpL) stood out to us. CalpL contains a sensor domain of the SAVED family7 fused to a Lon protease effector domain. However, the mode of action of this effector is unknown. Here we report the structure and function of CalpL and show that this soluble protein forms a stable tripartite complex with two other proteins, CalpT and CalpS, that are encoded on the same operon. After activation by cyclic tetra-adenylate (cA4), CalpL oligomerizes and specifically cleaves the MazF homologue CalpT, which releases the extracytoplasmic function σ factor CalpS from the complex. Our data provide a direct connection between CRISPR-based detection of foreign nucleic acids and transcriptional regulation. Furthermore, the presence of a SAVED domain that binds cyclic tetra-adenylate in a CRISPR effector reveals a link to the cyclic-oligonucleotide-based antiphage signalling system.


Subject(s)
Bacteria , Bacteriophages , CRISPR-Associated Proteins , CRISPR-Cas Systems , Nucleotides, Cyclic , Protease La , Bacteria/enzymology , Bacteria/immunology , Bacteria/metabolism , Bacteria/virology , Bacteriophages/immunology , Bacteriophages/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/physiology , Cyclic AMP/analogs & derivatives , Cyclic AMP/chemistry , Enzyme Activation , Gene Expression Regulation, Bacterial , Nucleotides, Cyclic/immunology , Nucleotides, Cyclic/metabolism , Operon , Protease La/chemistry , Protease La/metabolism , RNA, Viral , Sigma Factor , Transcription, Genetic
17.
J Exp Med ; 220(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36315050

ABSTRACT

Inflammasomes integrate cytosolic evidence of infection or damage to mount inflammatory responses. The inflammasome sensor NLRP1 is expressed in human keratinocytes and coordinates inflammation in the skin. We found that diverse stress signals induce human NLRP1 inflammasome assembly by activating MAP kinase p38: While the ribotoxic stress response to UV and microbial molecules exclusively activates p38 through MAP3K ZAKα, infection with arthropod-borne alphaviruses, including Semliki Forest and Chikungunya virus, activates p38 through ZAKα and potentially other MAP3K. We demonstrate that p38 directly phosphorylates NLRP1 and that serine 107 in the linker region is critical for activation. NLRP1 phosphorylation is followed by ubiquitination of NLRP1PYD, N-terminal degradation of NLRP1, and nucleation of inflammasomes by NLRP1UPA-CARD. In contrast, activation of NLRP1 by nanobody-mediated ubiquitination, viral proteases, or inhibition of DPP9 was independent of p38 activity. Taken together, we define p38 activation as a unifying signaling hub that controls NLRP1 inflammasome activation by integrating a variety of cellular stress signals relevant to the skin.


Subject(s)
Inflammasomes , Virus Diseases , p38 Mitogen-Activated Protein Kinases , Humans , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Inflammasomes/metabolism , NLR Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Osteoarthr Cartil Open ; 4(3): 100273, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36474938

ABSTRACT

Objectives: To compare joint regeneration in adult newts (N. viridescens) upon both newly established surgical removal and previously reported enzymatic destruction of articular cartilage to identify molecular factors and functionally analyze potentially important regulators involved in osteoarthritis (OA). Methods: Damage of knee cartilage was induced by either intra-articular injection of collagenase or by surgical removal of articular cartilage as a novel additional approach. Changes over time were clinically and histologically analyzed and studied by cDNA microarray analysis, real-time quantitative PCR, immunohistochemistry and functional assays to identify relevant candidate genes and determine their impact on regeneration. Results: Several genes were found to be up-regulated during regeneration, including extracellular matrix components and mediators of cell-matrix interactions, genes encoding for cellular components, for cell and tissue homeostasis and tissue remodelling, for cellular processes as well as signalling molecules. A high activity and diversity of transcription was detected on days 10 and 20, especially in the surgical model. 10 candidate genes were further analyzed. The matricellular protein tenascin C (TN-C) attracted our particular attention due to its prominent up-regulation during regeneration in both models and at different time points. Conclusions: Newts are able to regenerate OA-like articular cartilage damage ad integrum both after enzymatic and mechanical injury. Most of the genes involved in amphibians are also known to be operative in humans and other mammals, especially matricellular factors interfering with optimized matrix remodelling. Our results stress the necessity to elucidate mechanistic differences in different species potentially using identical molecules but with different functional results.

19.
Commun Biol ; 5(1): 1176, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329210

ABSTRACT

The innate immune system uses inflammasomal proteins to recognize danger signals and fight invading pathogens. NLRP3, a multidomain protein belonging to the family of STAND ATPases, is characterized by its central nucleotide-binding NACHT domain. The incorporation of ATP is thought to correlate with large conformational changes in NLRP3, leading to an active state of the sensory protein. Here we analyze the intrinsic ATP hydrolysis activity of recombinant NLRP3 by reverse phase HPLC. Wild-type NLRP3 appears in two different conformational states that exhibit an approximately fourteen-fold different hydrolysis activity in accordance with an inactive, autoinhibited state and an open, active state. The impact of canonical residues in the nucleotide binding site as the Walker A and B motifs and sensor 1 and 2 is analyzed by site directed mutagenesis. Cellular experiments show that reduced NLRP3 hydrolysis activity correlates with higher ASC specking after inflammation stimulation. Addition of the kinase NEK7 does not change the hydrolysis activity of NLRP3. Our data provide a comprehensive view on the function of conserved residues in the nucleotide-binding site of NLRP3 and the correlation of ATP hydrolysis with inflammasome activity.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hydrolysis , Inflammasomes/metabolism , Proteins , Adenosine Triphosphate/metabolism , Nucleotides
20.
J Biol Chem ; 298(12): 102645, 2022 12.
Article in English | MEDLINE | ID: mdl-36309085

ABSTRACT

The inflammasome sensor NLRP1 (nucleotide-binding oligomerization domain-like receptor containing a pyrin domain 1) detects a variety of pathogen-derived molecular patterns to induce an inflammatory immune response by triggering pyroptosis and cytokine release. A number of mutations and polymorphisms of NLRP1 are known to cause autoinflammatory diseases, the functional characterization of which contributes to a better understanding of NLRP1 regulation. Here, we assessed the effect of the common NLRP1 variant M1184V, associated with asthma, inflammatory bowel disease, and diabetes, on the protein level. Our size-exclusion chromatography experiments show that M1184V stabilizes the "function-to-find" domain (FIIND) in a monomeric conformation. This effect is independent of autoproteolysis. In addition, molecular dynamics simulations reveal that the methionine residue increases flexibility within the ZU5 domain, whereas valine decreases flexibility, potentially indirectly stabilizing the catalytic triad responsible for autocleavage. By keeping the FIIND domain monomeric, formation of a multimer of full-length NLRP1 is promoted. We found that the stabilizing effect of the valine further leads to improved dipeptidyl peptidase 9 (DPP9)-binding capacities for the FIIND domain as well as the full-length protein as determined by surface plasmon resonance. Moreover, our immunoprecipitation experiments confirmed increased DPP9 binding for the M1184V protein in cells, consistent with improved formation of an autoinhibited complex with DPP9 in activity assays. Collectively, our study establishes a molecular rationale for the dichotomous involvement of the NLRP1 variant M1184V in autoimmune syndromes.


Subject(s)
Autoimmune Diseases , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Inflammasomes , NLR Proteins , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Inflammasomes/metabolism , NLR Proteins/metabolism , Humans , Autoimmune Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL